RAW | PDF
% Title : Math notation of a FFT system % Author : George Ungureanu % Category : math \documentclass[preview]{standalone} \usepackage[math]{forsyde} \begin{document} The \ForSyDe system which performs the the Fast Fourier Transform can be defined in terms of atoms as: \begin{align} \SkelCons{fft}\ k\ vs =&\ \SkelCons{bitrev} ((\id{stage} \SkelFun \id{kern}) \SkelPip vs) \intertext{where the constructors} \id{stage}\ wdt =&\ \SkelCons{concat} \circ (segment \SkelFun \id{twiddles}) \circ \SkelCons{group}\ wdt \\ \id{segment}\ t =&\ \SkelCons{unduals} \circ (\id{butterfly}\ t\ \SkelFrm) \circ \SkelCons{duals} \\ \id{butterfly}\ w =&\ ((\lambda\ x_0\ x_1 \rightarrow x_0 + wx_1, x_0 - wx_1 )\ \BhDef)\ \MocCmb \\ \intertext{are aided by the number generators} \id{kern} =&\ \SkelCons{iterate}\ (\times 2)\ 2 \\ \id{twiddles} =&\ (\SkelCons{reverse} \circ \SkelCons{bitrev} \circ \SkelCons{take}\ (\SkelCons{lgth}\ vs/2)) (\id{wgen} \SkelFun \SkelVec{1..}) \\ \id{wgen}\ x =&\ -\frac{2 \pi (x-1)}{\SkelCons{lgth}\ vs} \end{align} \end{document}