
The ForSyDe–LATEX utilities

George Ungureanu
Department of Electronics, School of EECS,

KTH Royal Institute of Technology

Stockholm, SWEDEN

March 2, 2018

Abstract

This is the reference manual for the LATEX utilities used in ForSyDe documentations. This
manual presents the featured packages, their API, as well as some examples of usage.

1 Introduction

This library was developed as an effort to standardize symbols and graphical primitives in docu-
ments related to ForSyDe, but also to provide tools and utilities for user convenience. ForSyDe
is a high-level design methodology aiming at correct-by-construction system design flows through
formal means. For more information check https://forsyde.github.io.

The library contains the following main packages:

• forsyde-tikz : is a collection of PGF and TikZ styles, graphical primitives and com-
mands for drawing ForSyDe process networks;

• forsyde-math : is a collection of math symbols used in the ForSyDe formal notation. It
is mainly focused on the ongoing ForSyDe–Atom project;

• forsyde-plot : provides utilities for plotting ForSyDe signals;

• a set of additional TikZ picture libraries commonly used in ForSyDe documentation.

2 Installation & usage

The most straightforward way to install ForSyDe–LATEX is to use the provided GNU Make
script command:

make install

which installs the packages in TEXMFLOCAL if you have write access or TEXMFHOME otherwise.
Refer to https://en.wikibooks.org/wiki/LaTeX/Installing_Extra_Packages for more in-
formation about the two enviroment variables.

Alternatively, there are three main alternatives to manually install the libraries:

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

1

https://forsyde.github.io
https://www.gnu.org/software/make/
https://en.wikibooks.org/wiki/LaTeX/Installing_Extra_Packages
http://creativecommons.org/licenses/by-sa/4.0/

1. copy the contents of forsyde-latex/src and forsyde-latex/fonts in their appropriate
path under TEXMFHOME or any standard loading path, as specified by your LATEX compiler.

2. compile your document with the variable TEXINPUTS set to /path/to/forsyde-latex/src/.
If you intend to use forsyde-math characters, you need to generate the fonts under
forsyde-latex/fonts using a METAFONT tool suite, and afterwards compile your docu-
ment with the variable TEXFONTS set to /path/to/forsyde-latex/fonts/;

3. copy the contents of forsyde-latex/src and forsyde-latex/fonts in the same folder as
your document and compile normally.

To include any of the packages enumerated in the introduction, you cal load the forsyde

package with the appropriate option:

\usepackage[option]{forsyde}

where option is

• tikz for loading the forsyde-tikz package.

• math for loading the forsyde-math package.

• plot for loading the forsyde-plot package.

• legacy for using commands defined in previous versions of the library (v0.3 or earlier).

When loaded without an option, this package only provides some general commands for
typesetting and logos:

Command Expands to

\ForSyDe ForSyDe
\ForSyDeLaTeX ForSyDe–LATEX
\ForSyDeAtom ForSyDe–Atom

\ForSyDeShallow ForSyDe–Shallow

2

Contents

1 Introduction 1

2 Installation & usage 1

3 The forsyde-tikz package 5
3.1 Main nodes . 5

3.1.1 Draw commands . 5
3.1.2 Shapes . 9
3.1.3 Helper options . 10

3.2 Paths . 11
3.2.1 Helper commands . 13

3.3 Utility commands . 13
3.4 Further customizing the environment . 14

4 The forsyde-math package 16
4.1 Operator symbols . 16
4.2 Math commands . 17
4.3 Font map . 17

5 The forsyde-plot package 19
5.1 The signalsSY environment . 19
5.2 The signalsDE environment . 20
5.3 The signalsCT environment . 21

6 Libraries of additional pictures 23
6.1 The forsyde.pictures.layered library . 23

7 The forsyde-legacy package 25
7.1 forsyde-tikz v0.3 or prior . 25
7.2 forsyde-pc v0.3 or prior . 25

3

ev
en
s

filter

f1

DE.comb

SY

SDF
p2

ns od 1

SDF.mealy

SDF

SY

∆

sum
+

SY.comb

wrap

composite1 composite2

pattern1farm

z
i
p
x

V (S)in
S(V)in

>
0 i

〈f〉 〈1..1024〉

\documentclass{standalone}

\usepackage[tikz]{forsyde}

\begin{document}

\begin{tikzpicture}[]

\trans [transition, type=evens, rotate=-45] (a) {};

\trans [transition, type=filter, rotate=45, nf=1, f1={>0}] (b) <0,2> {};

\standard [process, nf=1, type=comb, moc=de, right of=b, xshift=3cm](c) {};

\interface[right of=a, xshift=2cm] (d1) {sy}{sdf};

\standard [process, f={ns;od;1}, type=mealy, moc=sdf, right of=d1](d) {p2};

\interface[right of=d] (e) {sdf}{sy};

\basic [primitiven, right of=c, f=i, xshift=1.5cm] (f) {Δ};

\standard [process, ni=2, anchor=w2, xshift=2cm,

f=$+$, moc=sy, type=comb] (g) <$(e)!.5!(f)$> {sum};

\cluster [embed, moc=sy, type=wrap, inner sep=15pt] (h) <(c)> {};

\cluster [composite, inner ysep=13pt] (i) <(d1)(d)> {composite1};

\cluster [composite, ni=2, inner xsep=5pt] (j) <(g)(i)(h)> {composite2};

\cluster [farmstyle, type=farm,

f={$\langle f \rangle$;$\langle 1 .. 1024 \rangle$}] (k) <(j)> {pattern1};

\trans [zipx, right of=g,xshift=2cm] (l) {};

% additional info nodes

\node[connector] (con) at ($ (a)!.5!(b)-(1,0) $){};

\node (in) at ($ (con)-(1.5,0) $){$V(S)_{in}$};

\node (out) at ($ (l)+(1.5,0) $) {$S(V)_{in}$};

% singal/vector edges

\path[v] (con) edge (in) edge (a.w1) edge (b.w1);

\path (b.e1) edge[intersect=k-west, as=b-c1] (c) edge[intersect=h-west, as=b-c2] (c)

(b-c1) edge[v] (b.e1) edge[s=sy,srcport] (b-c2)

(b-c2) edge[s=de,->] (c)

(f) edge[trans={<-,sn=sy}{h-east}{sn=de}] (c)

edge[sn=sy,-|-=.8,->] (g.w1)

(a.e1) edge[trans={v,dstport}{k-west}{s,->}] (d1)

(d) edge[<-, srcport, s] (d1)

edge[s, srcport, ->] (e)

(e) edge[s,-|-,->] (g.w2)

(g.e1) edge[intersect=k-east, as=g-l] (l)

edge[s] (g-l)

(g-l) edge[v,srcport,token=scalar,->] (l)

(l) edge[s,token=vector,->] (out);

% function edges, suggest the passing of functions as arguments

\path[f] (k-f.s1) edge[|-|=.3,->] (c.north) (k-f.s2) edge[|-|=.2,->] (f-f.n1);

\end{tikzpicture}

\end{document}

4

3 The forsyde-tikz package

This library is used to draw ForSyDe systems modeled as process networks. The package is
imported using the command \usepackage[tikz]{forsyde} in the document preamble.

A ForSyDe process network is drawn inside a tikzpicture environment, like any other
TikZ figure. The options provided are key variables defined by the tikz package.environment

\begin{tikzpicture}[options]

content...

\end{tikzpicture}

Apart from the standard keys, forsyde-tikz provides the following options variables:environment

variables
no moc color : disables process coloring according to their MoC.
no moc label : disables process labeling according to their MoC.
label style= : font style for the process type labels. Default is \textbf.
type style= : font style for the process name labels. Default is \scriptsize\textit.
function style= : font style for the functions. Default is \scriptsize.
constructors=[shallow|atom] : switches between the process constructor naming conven-

tion of either ForSyDe–Shallow or ForSyDe–Atom. Default is atom.

3.1 Main nodes

Process networks are drawn using a combination of commands and style options for customizing
shapes.

3.1.1 Draw commands

Inside the tikzpicture environment, one can use a set of draw commands1 which are used as
templates for placing shapes and information provided as arguments. In the following listing,
the gray arguments are optional while the black ones are mandatory. The library also provide
as set of helper styles for setting several options at once, presented in 3.1.3.

⊕

ba
s-
f.
n1

ba
s-
f.
s1

+1

\basic[shape=atom shape, nf=1, f1=$+1$] (bas) <0,0> {\oplus};

Figure 1: The \basic draw command. The red dots are custom anchors, accessed with [name]-f.[anchor].

\basic[options](name)<position>{label};
The basic node is the simplest depiction of a function (e.g., process, atom) with maximum one
argument. It is the most lightweight graphical primitive, and does not contain port anchors. It
can be customized with the following keys (check 3.1.3 for composite options):

1All draw commands are defined in the forsyde.nodes TikZ library, which is loaded by de-
fault by the forsyde-tikz package, but can also be loaded independently using the command
\usetikzlibrary{forsyde.nodes} in the document preamble.

5

shape= any TikZ style option for the node shape. Check section 3.1.2 for a list of library-
provided shapes. Default is rectangle.

nf=[0..1] the number of passed functions. Default is 0. If nf>1 then nf=1.
f1= function label. Appears as a box above the main shape in case nf > 0. Default is f1.
anchor=[anchor] center point for shape. Default is center.
xshift=[distance] shift position in X direction. Default is 0pt.
yshift=[distance] shift position in Y direction. Default is 0pt.

Proc

+1 f2 sin f4

mealyDE

s
t
d
-
f
.
n
1

s
t
d
-
f
.
n
2

s
t
d
-
f
.
n
3

s
t
d
-
f
.
n
4

std.w1
std.w2
std.w3
std.w4
std.w5
std.w6
std.w7
std.w8

std.e1
std.e2
std.e3
std.e4
std.e5
std.e6
std.e7
std.e8
std.e9
std.e10

\standard[shape=leaf shape, hasmoc, moc=de, ni=8, no=10, type=mealy, nf=4, f1=$+1$, f3=\sin,

inner ysep=15pt] (std) <0,0> {Proc};

Figure 2: The \standard draw command. The function anchors are accessed with [name]-f.[anchor] and the
port anchors are accessed with [name].[anchor]

\standard[options](name)<position>{label};
The standard node is a more complex depiction of a ForSyDe block. It contains anchors for each
port, shows a label and the constructor name, and its field is colored according to a MoC (if this
is the case). It can be customized with the following keys (check 3.1.3 for composite options):

class=[sy|de|ct|sdf|csdf|sadf|blackbox|none] The class of the node. This option af-
fects the field color and the constructor label. Default is none.

hasmoc flag for saying that this node is a process, therefore it is associated with a MoC.
It need to be provided otherwise the global flags will ignore MoC-related options (e.g.
nomoccolor).

shape= any TikZ style option for the node shape. Check section 3.1.2 for a list of library-
provided shapes. Default is rectangle.

type= the type / constructor of that particular ForSyDe block. It shows below the main label
and it might be affected by the moc argument.

npw=[0..10] number of ports on the left side of the node, i.e. the number of left port anchors.
ni=[0..10] alias for npw, stands for “number of inputs”.
npe=[0..10] number of ports on the right side of the node, i.e. the number of right port

anchors.
no=[0..10] alias for npe, stands for “number of outputs”.
nf=[0..4] the number of passed functions. Default is 0.
f1= first function label. Appears as a box in the upper part in case nf > 0. Default is f1.
f2= second function label. Appears as a box in the upper part in case nf > 1. Default is f2.
f3= third function label. Appears as a box in the upper part in case nf > 2. Default is f3.
f4= fourth function label. Appears as a box in the upper part in case nf > 3. Default is f4.
anchor=anchor center point for shape. Default is center.
xshift=dist shift position in X direction. Default is 0pt.

6

yshift=dist shift position in Y direction. Default is 0pt.
rotate=num the rotation angle (in degrees) of the node. Default is 0.
rotate shape=num the rotation angle (in degrees) of the shape. Defailt is 0.
inner ysep=dist the distance between the function node, the label node and the type node.

Default is 3pt.

SY

SDF
if.e1if.w1

\interface[] (if) <0,0> {sy}{sdf};

Figure 3: The \trans draw command. The function anchors are accessed with [name]-f.[anchor] and the port
anchors are accessed with [name].[anchor]

\interface[options](name)<position>{domain left}{domain right};
This command draws an interface from one domain to another (e.g. a MoC interface). It can be
customized with the following keys (check 3.1.3 for composite options):

anchor=anchor center point for shape. Default is center.
xshift=dist shift position in X direction. Default is 0pt.
yshift=dist shift position in Y direction. Default is 0pt.
rotate=num the rotation angle (in degrees) of the node. Default is 0.

s
p
l
i
t
e
v
e
r
y

tr
an
-f
.n
1

tran.e1

tran.e2

tran.e3

tran.w1

n

\trans[shape=trans shape v1v3, ni=1, no=3, nf=1, f1=n, type=splitevery, inner ysep=5pt] (tran)

<0,0> {};

Figure 4: The \trans draw command. The function anchors are accessed with [name]-f.[anchor] and the port
anchors are accessed with [name].[anchor]

\trans[options](name)<position>{};
This command draws a transversal node over a path (usually 90 degrees), which symbolizes a
structural transition of the path’s type (e.g. permutation). The label is ignored, but the brackets
are necessary to mark the end of the arguments. It can be customized with the following keys
(check 3.1.3 for composite options):

shape= any TikZ style option for the node shape. Check section 3.1.2 for a list of library-
provided shapes. Default is rectangle.

type= the type / constructor of that particular ForSyDe block. It is shown as the main label,
rotated at 90 degrees.

npw=[0..10] number of ports on the left side of the node, i.e. the number of left port anchors.

7

ni=[0..10] alias for npw, stands for “number of inputs”.
npe=[0..10] number of ports on the right side of the node, i.e. the number of right port

anchors.
no=[0..10] alias for npe, stands for “number of outputs”.
nf=[0..4] the number of passed functions. Default is 0.
f1= first function label. Appears as a box in the upper part in case nf > 0. Default is f1.
f2= second function label. Appears as a box in the upper part in case nf > 1. Default is f2.
f3= third function label. Appears as a box in the upper part in case nf > 2. Default is f3.
f4= fourth function label. Appears as a box in the upper part in case nf > 3. Default is f4.
anchor=anchor center point for shape. Default is center.
xshift=dist shift position in X direction. Default is 0pt.
yshift=dist shift position in Y direction. Default is 0pt.
rotate=num the rotation angle (in degrees) of the node. Default is 0.
rotate shape=num the rotation angle (in degrees) of the shape. Defailt is 0.
inner ysep=dist the distance between the function node, the label node and the type node.

Default is 3pt.

n1

n2

Clustermesh

c
l
u
s
-
f
.
n
1

c
l
u
s
-
f
.
s
1

c
l
u
s
-
f
.
n
2

c
l
u
s
-
f
.
s
2

c
l
u
s
-
f
.
n
3

c
l
u
s
-
f
.
s
3

c
l
u
s
-
f
.
n
4

c
l
u
s
-
f
.
s
4

clus.w1

clus.w2

clus.w3

clus.w4

clus.e1

clus.e2

clus.e3

clus.e4

clus.e5

clus-north

clus-south

c
l
u
s
-
w
e
s
t

c
l
u
s
-
e
a
s
t

+1 f2 sin f4

\node[draw] (n1) at (0,0) {n1};

\node[draw] (n2) at (2,1) {n2};

\cluster[shape=generic skel shape, ni=4, no=5, type=mesh, nf=4, f1=$+1$, f3=\sin, inner sep=15

pt] (clus) <(n1)(n2)> {Cluster};

Figure 5: The \cluster draw command. The function anchors are accessed with [name]-f.[anchor], the port
anchors are accessed with [name].[anchor] and the cluster outer shape edges are named [name]-[position]

\cluster[options](name)<list of clustered nodes>{label};
This command draws a cluster around other nodes. Instead of a position, it requires a list of
nodes to fit. Apart from the functions and port anchors as seen in the previous commands, this
command provides the edges of the outer shape cluster as names. These names can be used
further in computing intersection points. It can be customized with the following keys (check
3.1.3 for composite options):

class=[sy|de|ct|sdf|csdf|sadf|blackbox|none] The class of the node. This option af-
fects the field color and the constructor label. Default is none.

hasmoc flag for saying that this node is a process, therefore it is associated with a MoC.
It need to be provided otherwise the global flags will ignore MoC-related options (e.g.
nomoccolor).

shape= any TikZ style option for the node shape. Check section 3.1.2 for a list of library-
provided shapes. Default is rectangle.

8

type= the type / constructor of that particular ForSyDe block. It shows below the main label
and it is affected by the class argument.

npw=[0..10] number of ports on the left side of the node, i.e. the number of left port anchors.
ni=[0..10] alias for npw, stands for “number of inputs”.
npe=[0..10] number of ports on the right side of the node, i.e. the number of right port

anchors.
no=[0..10] alias for npe, stands for “number of outputs”.
nf=[0..4] the number of passed functions. Default is 0.
f1= first function label. Appears as a box in the upper part in case nf > 0. Default is f1.
f2= second function label. Appears as a box in the upper part in case nf > 1. Default is f2.
f3= third function label. Appears as a box in the upper part in case nf > 2. Default is f3.
f4= fourth function label. Appears as a box in the upper part in case nf > 3. Default is f4.
anchor=anchor center point for shape. Default is center.
xshift=dist shift position in X direction. Default is 0pt.
yshift=dist shift position in Y direction. Default is 0pt.
rotate=num the rotation angle (in degrees) of the node. Default is 0.
rotate shape=num the rotation angle (in degrees) of the shape. Defailt is 0.
inner xsep=dist the inner separation in X direction. Default is 3pt.
inner ysep=dist the inner separation in Y direction. Default is 3pt.

\node[ports e8w8, inner ysep=18pt] (inside) at (2,0) {};

\cluster[shape=trans shape v1v1,inner sep=2pt]<(inside)>{};

\drawconduit{inside}{8}{8};

\foreach \i in {1,3,...,8} {\draw[very thin, ->] (inside.w\i) -- (inside.e\i);}

Figure 6: The \drawconduit draw command.

\drawconduit[length]{node with ports}{num. ports west}{num. ports east};
This command draws short lines outside a node with port anchors, that might be interpreted as
“conduits” or “ports”. It is used as helper for drawing, for example, custom-shaped transition
patterns, like in the figure above.

3.1.2 Shapes
node shapes

ForSyDe-TikZ provides a collection of raw shapes2 either as TikZ styles or as low-level PGF
drawings. They are often used as arguments for drawing commands. Below is a list with them
and their usage:

Shape Drawing Description

atom shape meant to be used with the \basic command, it is a good
candidate for depicting ForSyDe atoms or other primitive
blocks.

2All shapes are defined in the forsyde.shapes TikZ library, which is loaded by default by the forsyde-tikz

package, but can also be loaded independently using the command \usetikzlibrary{forsyde.shapes} in the
document preamble.

9

nary atom shape similar to atom shape, but suggests an n-tuple of blocks.

leaf shape meant to be used with the \standard command, it is a
good candidate for depicting abstractions of more complex
semantics (e.g. black boxes).

nary leaf shape similar to leaf shape, but suggests an n-tuple of blocks.

comp shape meant to be used with the \cluster command, it is a good
candidate for depicting exposed hierarchical blocks such as
composite processes.

nary comp shape similar to comp shape, but suggests an n-tuple of blocks.

ports

e[0..10]w[0..10]

these are multiple shapes that have no drawing, but de-
fine additional anchors3 for ports on the east (.e[index])
and west (.w[index]) sides of the node. It is meant to fit
around an existing shape.

func[0..4] a b c d these shapes create a series of boxes with text and for each
box two anchors: north (.n[index]), south (.s[index]).
They are used to show functions as input arguments.

dp shape meant to be used with the \cluster command, this shape
suggests a data parallel skeleton.

pipe shape meant to be used with the \cluster command, this shape
suggests a pipeline skeleton.

merge shape meant to be used with the \cluster command, this shape
suggests a reduce/recur skeleton.

generic skel

shape

meant to be used with the \cluster command, this shape
suggests generic skeleton which implies a recursive compo-
sition of functions/blocks.

trans shape

v[1..8]v[1..8]

meant to be used with the \trans command, this shape
suggests a transition in the structure of n input vectors
resulting in n’ output vectors.

trans shape s1v1 meant to be used with the \trans command, this shape
suggests a transposition of a vector to/from a stream.

trans shape

v1gv1

meant to be used with the \trans command, this shape
suggests a grouping/merging to/from a vector of vectors.

3.1.3 Helper options
node helper

keys The forsyde-tikz library provides a large set of styles or function keys4 that can be used for
user convenience as options in the draw commands shown in section 3.1.1.

Key Description/Expands to

moc=x hasmoc, class=x

inner sep=x inner xsep=x, inner ysep=x

left of=x positions left of node x, with an edge-to-edge distance = 1cm

3apart from the ones inherited from rectangle
4The helpers are defined in the forsyde-tikz package itself, separated from the TikZ libraries.

10

right of=x positions right of node x, with an edge-to-edge distance = 1cm
above of=x positions above of node x, with an edge-to-edge distance = 1cm
below of=x positions below of node x, with an edge-to-edge distance = 1cm
f={a;b;c;d} parses a string of functions separated by ; and sets nf, f1, f2, f3 and

f4 accordingly
primitive shape=atom shape

primitiven shape=nary atom shape

process shape=leaf shape, hasmoc

processn shape=nary leaf shape, hasmoc

composite shape=comp shape

compositen shape=comp shape

embed shape=leaf shape, hasmoc, inner sep=15pt

farmstyle shape=dp shape, inner xsep = 15pt, inner ysep = 20pt,

pipestyle shape=pipe shape, inner xsep = 15pt, inner ysep = 20pt,

skeleton shape=generic skel shape, inner xsep = 15pt, inner ysep =

20pt,

transition=v2v3 shape=trans shape v2v3. Default argument is v1v1.
zipx transition=s1v1, rotate shape=180, type=zipx,

unzipx transition=s1v1, type=unzipx,

3.2 Paths

Data flow in forsyde-tikz is represented as (directed) edges between components. These are
regular TikZ paths5, customized with a series of keys provided by the library. There are obvious
advantages for using the TikZ infrastructure, such as being able to further customize paths
outside the scope of this library, or reuse existing keys (e.g. the arrow tips, shapes). The custom
port or function anchors presented in the previous section come in handy when considering
port-to-port connections.

The library provides the following custom keys:path keys

s=[MoC] draws a signal. If the global options allow it, passing a MoC string to this key will
color the signal accordingly.

sn=[MoC] draws an n-tuple of signals. If the global options allow it, passing a MoC string to
this key will color the signal accordingly.

v=[MoC] draws a vector. If the global options allow it, passing a MoC string to this key will
color the vector accordingly, suggesting that it contains signals of their respective MoC.

vn=[MoC] draws an n-tuple of vectors. If the global options allow it, passing a MoC string
to this key will color the vector accordingly, suggesting that it contains signals of their
respective MoC.

f draws an edge used for showing how arguments of a higher order function or a hierarchical
block are further passed to its components.

fn similar to f, but for n-tuples of functions.
srcport draws a port symbol at the source of the path.
dstport draws a port symbol at the destination of the path.
token=[token-string] draws symbols for depicting the data structures carried by ForSyDe

signals or vectors. The accepted tokens strings are scalar|vector|function. To draw tu-

5All paths are defined in the forsyde.paths TikZ library, which is loaded by default by the forsyde-tikz

package, but can also be loaded independently using the command \usetikzlibrary{forsyde.paths} in the
document preamble.

11

\node[draw] (a) at (6, -1) {};

\cluster[embed] (cl) <(a)> {};

\path (0,2) edge[s, srcport,->,dstport] (1.5,2)

(2,2) edge[s=ct,-> , token=vector-scalar] (3.5,2)

(4,2) edge[s=sy, -|-|-=0.2:0.6, deviate=-10pt] (5.5,2)

(6,1.7) edge[s, <-<, token=scalar, token pos=0.2, -|-] (7.5,2.3)

(0,1) edge[v,token=scalar-vector-function,srcport,->,dstport] (2,1)

(3,1) edge[v=sdf] (5,1)

(6,1) edge[v, <-, token=vector,token pos=0.35] (8,1)

(1,0) edge[f, ->, |-|=0.6] (2,-2)

(4,-1) edge[trans={v,dstport}{cl-west}{s,->}] (a);

Figure 7: Different paths created with the library provided styles

ple structures you have to separate token keywords by - (dash). E.g.: 3-tuple of scalar, vec-
tor and function can be drawn with token=scalar-vector-function. To depict functions
which take other data types as arguments, you can group some tokens between parentheses.
E.g. a 2-tuple of a scalar and a function which takes a vector and a scalar as arguments
can be drawn with token=scalar-(vector-scalar).

token pos=[0.0 .. 1.0] the position between the start node/anchor and the end node/an-
chor of the token symbols’ center position. Default is 0.5.

intersect=[path-name] finds the first intersection with the path named [path-name], and
creates a coordinate from it, named by default int if no other name was given with the as

key.
as=[coordinate-name] names the intersection coordinate found with the intersect.
trans={source-path-style}{intersection-path-name}{destination-path-style} is a

helper key which finds the intersection of the current path with intersection-path-name,
splits the current path into two, decorated with source-path-style and destination-path-style

respectively.
-|-=[0.0..1.0] will create a horizontal-vertical-horizontal spline in the path. It may be

accompanied by a number which determines the position of the 90 degree angle.
|-|=[0.0..1.0] will create a vertical-horizontal-vertical spline in the path. It may be ac-

companied by a number which determines the position of the 90 degree angle.
-|-=[0.0..1.0] will create a horizontal-vertical-horizontal spline in the path. It may be

accompanied by a number which determines the position of the 90 degree angle.
-|-|=[0.0..1.0] will create a horizontal-vertical-horizontal-vertical spline in the path. It

may be accompanied by a number which determines the position of the 90 degree angle.
-|-|-=[0.0..1.0]:[0.0..1.0] will create a horizontal-vertical-horizontal-vertical-horizontal

spline in the path. It may be accompanied by two numbers separated by : which determine

12

the position of the 90 degree angles.
|-|-|=[0.0..1.0]:[0.0..1.0] will create a vertical-horizontal-vertical-horizontal-vertical

spline in the path. It may be accompanied by two numbers separated by : which determine
the position of the 90 degree angles.

deviate= is a length representing the deviation from the straight path in case of complex
splines (-|-|,-|-|- and |-|-|).

3.2.1 Helper commands

The following commands can be alternatively used to draw paths, in case the complexity of the
\path TikZ command is not needed. The MoC can be passed to the moc style key.

\signal[style] (from) arrow-tip (to);

\signaln[style] (from) arrow-tip (to);

\vector[style] (from) arrow-tip (to);

\vectorn[style] (from) arrow-tip (to);

\function[style] (from) arrow-tip (to);

\functionn[style] (from) arrow-tip (to);

3.3 Utility commands

Following is a list of miscellaneous functions and environments provided for user convenience:

\textleftof{node}{text}
\textrightof{node}{text}
\textaboveof{node}{text}
\textbelowof{node}{text}
\ifnodedefined{node}{true expr}{false expr}

Conditional sub-drawing if a node has been defined or not. Useful for ignoring edge cases when
drawing recursive structures with \foreach.

\gettikzx{node}{\xmacro}
Gets the X coordinate of node and stores it in \xmacro.

\gettikzy{node}{\ymacro}
Gets the Y coordinate of node and stores it in \ymacro.

\gettikzxy{node}{\xmacro}{\ymacro}
Gets the X and Y coordinates of node and stores them in \xmacro and \ymacro respectively.

P1

f1

.comb

2
3

1

2

6

\standard[shape=leaf shape, ni=3, no=2, type=comb, nf=1] (n) <0,0> {P_1};

\resetportinfo{n}\wpinfo[east]{2}\wpinfo{3}\wpinfo{1}\epinfo{2}\epinfo{6}

Figure 8: An example of using the \resetportinfo, \epinfo and \wpinfo commands

13

\resetportinfo{node}
Resets the counters for the \epinfo and \wpinfo commands which decorates ports with infor-
mation. These commands can be used for decorating ports, for example, with production and
consumption rates in case of SDF processes.

\wpinfo[anchor]{label}
Places a label node next to a western port and increases its counter.

\epinfo[anchor]{label}
Places a label node next to a eastern port and increases its counter.

3.4 Further customizing the environment

The following commands can be used in the document preamble for changing environment vari-
ables.

% Colors

\renewcommand{\defaultdrawcolor}{[color]}

\renewcommand{\defaultfillcolor}{[color]}

\definecolor{sycolor}{[coord sys]}{[color coord]}

\definecolor{ctcolor}{[coord sys]}{[color coord]}

\definecolor{decolor}{[coord sys]}{[color coord]}

\definecolor{sdfcolor}{[coord sys]}{[color coord]}

\definecolor{blackboxcolor}{[coord sys]}{[color coord]}}

% line widths

\renewcommand{\compositelinewidth}{[size]}

\renewcommand{\skeletonlinewidth}{[size]}

\renewcommand{\signalpathlinewidth}{[size]}

\renewcommand{\functionpathlinewidth}{[size]}

\renewcommand{\vectorpathlinewidth}{[size]}

% sizes, etc.

\renewcommand{\tokensize}{[size]}

\renewcommand{\halftokensize}{[size]}

14

The ForSyDesystem which performs the the Fast Fourier Transform can be
defined in terms of atoms as:

fftS k vs = bitrevS((stage 2 kern)1 vs) (1)

where the constructors

stage wdt = concatS ◦ (segment2 twiddles) ◦ groupS wdt (2)

segment t = undualsS ◦ (butterfly t 0) ◦ dualsS (3)

butterfly w = ((λ x0 x1 → x0 + wx1, x0 − wx1) �) (4)

are aided by the number generators

kern = iterateS (×2) 2 (5)

twiddles = (reverseS ◦ bitrevS ◦ takeS (lgthS vs/2))(wgen 2 〈1..〉) (6)

wgen x = − 2π(x− 1)

lgthS vs
(7)

\documentclass[preview]{standalone}

\usepackage[math]{forsyde}

\begin{document}

The \ForSyDe system which performs the the Fast Fourier Transform can

be defined in terms of atoms as:

\begin{align}

\SkelCons{fft}\ k\ vs =&\ \SkelCons{bitrev} ((\id{stage} \SkelFun \id{kern}) \SkelPip vs)

\intertext{where the constructors}

\id{stage}\ wdt =&\ \SkelCons{concat} \circ (segment \SkelFun \id{twiddles})

\circ \SkelCons{group}\ wdt \\

\id{segment}\ t =&\ \SkelCons{unduals} \circ (\id{butterfly}\ t\ \SkelFrm)

\circ \SkelCons{duals} \\

\id{butterfly}\ w =&\ ((\lambda\ x_0\ x_1 \rightarrow x_0 + wx_1, x_0 - wx_1)\ \BhDef)\

\MocCmb \\

\intertext{are aided by the number generators}

\id{kern} =&\ \SkelCons{iterate}\ (\times 2)\ 2 \\

\id{twiddles} =&\ (\SkelCons{reverse} \circ \SkelCons{bitrev} \circ \SkelCons{take}\

(\SkelCons{lgth}\ vs/2)) (\id{wgen} \SkelFun \SkelVec{1..}) \\

\id{wgen}\ x =&\ -\frac{2 \pi (x-1)}{\SkelCons{lgth}\ vs}

\end{align}

\end{document}

15

4 The forsyde-math package

This package provides a set of symbols and commands for writing equations. At the moment it
covers only the formal notation associated with the ForSyDe–Atom framework. The package
is imported using the command \usepackage[math]{forsyde} in the document preamble.

4.1 Operator symbols

The forsyde-math package exports a set of symbols written in the METAFONT language (see
4.3). These symbols are typed in using commands following the naming convention:

\<name> % inside a math environment

\text<name> % inside a text environment

where the symbol name is from the table below6:operator

symbols

<name> 5pt 7pt 8pt 9pt 10pt 12pt 14.4pt 17.28pt 20.74pt 24.88pt

BhFun � � � � � � � � � �
BhApp � � � � � � � � � �
BhDef � � � � � � � � � �
BhPhi � � � � � � � � � �
BhDeg � � � � � � � � � �

MocFun ! ! ! ! ! ! ! ! ! !
MocApp " " " " " " " " " "
MocCmb
MocPre # # # # # # # # # #
MocPhi $ $ $ $ $ $ $ $ $ $
MocDel % % % % % % % % % %

SkelFrm 0 0 0 0 0 0 0 0 0 0
SkelPip 1 1 1 1 1 1 1 1 1 1
SkelFun 2 2 2 2 2 2 2 2 2 2

6the symbol naming scheme reflects their semantics defined in the ForSyDe–Atom framework, as two
acronyms: first one denoting the layer and the second one denoting the constructor

16

SkelApp 3 3 3 3 3 3 3 3 3 3
SkelRed 4 4 4 4 4 4 4 4 4 4
SkelRec 5 5 5 5 5 5 5 5 5 5

4.2 Math commands

There are a couple of macros defined for math environments, mainly for convenience. They are
listed below:math

commands
Command Example Result Explanation

\id{name} \id{func} func wraps name as an identifier, rather than loose
characters

\context{ctx}{f} $\context{\Gamma}{f}$ Γ`f associates context ctx to function f

\Constructor

{name}{layer}
$\Constructor{all}{T}$ allT generic infix name for constructor in a user-

defined layer
\BhCons{name} $\BhCons{default}$ defaultB infix name for constructor in the behav-

ior layer
\MocCons{name} \MocCons{mealy} mealyM infix name for constructor in the MoC layer
\SkelCons{name} \SkelCons{mesh} meshS infix name for constructor in the skeleton layer
\SkelVec{exp} \SkelVec{v} 〈v〉 surrounds exp in vector type delimiters, asso-

ciated with the skeleton layer

4.3 Font map

The ForSyDe–Atom operators from 4.1 have been created using METAFONT and have been
bundled as a font family called forsydeatom. These fonts can be imported in accordance to the
LATEX 2ε standard. The math symbol font based on this font family is called atomoperators

and it declares all symbols as binary operators.
In case you need to access the fonts directly (and not through the forsyde-math package),

here is the mapping of the forsydeatom font family:

Test of forsydeatom10 on March 2, 2018 at 1157

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́2x � � � � �

˝1x
0́3x

0́4x ! " # $ %

˝2x
0́5x

0́6x 0 1 2 3 4 5

˝3x
0́7x

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

17

CT.sampDE

0

1

−1

0 1.57 3.14 4.71 6.28 7.85

1 1 1 1 1

0.0 3.14 6.28

0 1 0 -1 00

0.0 3.14 6.28

\documentclass{standalone}

\usepackage[plot,tikz]{forsyde}

\usepackage{filecontents}

\begin{filecontents}{ct-sampde-i1.flx}

0.0 : 0 , 9.983480705722622e-2 : 0.10000000149,

0.5646425989611361 : 0.60000000894 , 0.6442172934010967 : 0.70000001043,

0.9635580777669631 : 1.30000001937 , 0.9854495936745004 : 1.40000002086,

0.8632093171439696 : 2.10000003129 , 0.5984721912401382 : 2.50000003725,

0.5155014142351443 : 2.60000003874 , 0.2392493170657283 : 2.90000004321,

0.1411199729841522 : 3.0000000447 , -0.15774590023230295 : 3.30000004917,

-0.2555412776230858 : 3.40000005066 , -0.5298363260375504 : 3.70000005513,

-0.6118581429834538 : 3.80000005662 , -0.8715756491042981 : 4.20000006258,

-0.9161661569653531 : 4.30000006407 , -0.9999232696597815 : 4.70000007003,

-0.9961645277800696 : 4.80000007152 , -0.9824524964336662 : 4.90000007301,

-0.8322681468629263 : 5.30000007897 , -0.7727641178059984 : 5.40000008046,

-0.46460085726814676 : 5.80000008642 , -8.308743802765294e-2 : 6.20000009238,

0.31154304920391934 : 6.60000009834 , 0.40484843505764895 : 6.70000009983,

0.7289691091159304 : 7.10000010579 , 0.7936684574683253 : 7.20000010728,

0.9679197162034261 : 7.60000011324 , 0.9989413219493093 : 7.90000011771

\end{filecontents}

\begin{filecontents}{ct-sampde-o1.flx}

0.0 : 0,

1.0 : 1.570796326794,

1.793238462856701e-12 : 3.141592653588,

-1.0 : 4.712388980382,

0.0 : 6.283185307176,

1.0 : 7.85398163397,

-3.0403029981061924e-7 : 8

\end{filecontents}

\begin{document}

\begin{tikzpicture}[]

\standard[process, ni=2, no=1, moc=ct, type=sampDE](p1){};

\begin{signalsCT}[name=ct-in, timestamps=1.57, grid=1.57, at={p1.west}, anchor=north east,

xshift=-.5cm, yshift=-.2cm, xscale=1]{7.86}

\signalCT*[outline,ordinate=0,ymin=-1,ymax=1]{ct-sampde-i1.flx}

\end{signalsCT}

\begin{signalsDE}[name=de-in, timestamps=3.14, grid=3.14, at={p1.west}, anchor=south east,

xshift=-.4cm, yshift=.2cm]{8}

\signalDE[trunc,last label=false]{ 1.0 : 0, 1.0 : 1.570, 1.0 : 3.141, 1.0 : 4.712, 1.0 :

6.283, 1.0 : 7.853, 1.0 : 8 }

\end{signalsDE}

\begin{signalsDE}[name=de-out, timestamps=3.14, grid=3.14, outputs={p1.east}]{7.8}

\signalDE*[trunc]{ct-sampde-o1.flx}

\end{signalsDE}

\path[s,-|-,->] (de-in.e1) edge (p1.w1) (ct-in.e1) edge (p1.w2) (p1.e1) edge (de-out.w1);

\end{tikzpicture}

\end{document}

18

5 The forsyde-plot package

This package provides environments and plot commands for visualizing the contents of ForSyDe
signals. It is meant to be an alternative to GNUplot or other plotting tools, but not necessarily a
replacement for these. The package is imported using the command \usepackage[plot]{forsyde}
in the document preamble.

5.1 The signalsSY environment

This environment creates a TikZ matrix of events, where each row is the content of a signal,
and “synchronous” events are aligned on columns. This environment is suitable for depicting
signals where the time/causality between events is implicit from their position in the signal. This
includes synchronous signals, but also any dataflow signals.environment

\begin{signalsSY}[options]

body...

\end{signalsSY}

The body of the environment usually consists of a series of \signalSY commands, but it may
also contain any command acceptable within a TikZ matrix environment. Notice that it needs
an initial line break. The options are:options

name= the name of the TikZ element. Default is sigplot.
at= the position of the plot within the tikzpicture. Default is (0,0).
xshift=dist, yshift=dist, shift=coord a displacement in the respective direction.
anchor=anchor where this element should be anchored.
left of=coord, right of=coord, above of=coord, below of=coord positions the element ac-

cordingly.
inputs=coord, outputs=coord positions the element left of/right of the given coordinate.

1 2 3 4 5 6 7 8 9

2 1 2 3 -2 -6 6

9 8 7 6 5 4 3 2 1

n-
1-

1

n-
1-

2

n-
1-

3

n-
1-

4

n-
1-

5

n-
1-

6

n-
1-

7

n-
2-

1

n-
2-

2

n-
2-

3

n-
2-

4

n-
2-

5

n-
2-

6

n-
2-

7

n-
3-

1

n-
3-

2

n-
3-

3

n-
3-

4

n-
3-

5

n-
3-

6

n-
3-

7

n-
1-

8

n-
1-

9

n-
3-

8

n-
3-

9

\begin{signalsSY}[name=n]

\signalSY{1,2,3,4,5,6,7,8,9}

\signalSY{2,1,2,3,-2,-6,6}

\signalSY{9,8,7,6,5,4,3,2,1}

\end{signalsSY}

Figure 9: The \signalSY draw command. The red boxes are nodes accessed with [name]-[row]-[column].

\signalSY{events}
The SY signal is simply a row in a matrix, and the elements can be accessed according to the
TikZ matrix of nodes.

19

5.2 The signalsDE environment

This environment creates a (simple) plot of DE signals similar to Modelsim or GTKwave, within
a tikzpicture.environment

\begin{signalsDE}[options]{xmax}

body...

\end{signalsDE}

The body within the environment consists of a series of \signalDE commands. It requires
an xmax number which stands for the last timestamp plotted. The options are:options

name= the name of the TikZ element. Default is sigplot.
grid=step draws a dashed line every step time(stamps).
timestamp=step shows the time(stamp) above the plot at every step.
grid and time=step is equivalent to grid=step and timestamp=step.
label pos= position of the label within the plotted bar. Default is center.
signal sep=dist the vertical distance between two consecutive signals.
xscale=ratio and yscale=ratio scales the plot.
at= the position of the plot within the tikzpicture. Default is (0,0).
xshift=dist, yshift=dist, shift=coord a displacement in the respective direction.
anchor=anchor where this element should be anchored.
left of=coord, right of=coord, above of=coord, below of=coord positions the element ac-

cordingly.
inputs=coord, outputs=coord positions the element left of/right of the given coordinate.

2 -2 3 -3

1 2 3 4

ε 1.0002 λ 2.0

0.0 3.0 6.0 9.0

n.e1n.w1

n.e2n.w2

n.e3n.w3

\begin{filecontents}{de-input1.flx}

1:0, 2:2, 3:3, 4:6, 5:8, 5:15

\end{filecontents}

% ...

\begin{signalsDE}[name=n, grid and time=3]{10}

\signalDE [trunc]{2.0:0, -2.0:3, 3.0002:5, -3:8, 5:15}

\signalDE*[last label=false]{de-input1.flx}

\signalDE {ϵ:0, 1.0002:4, λ:6, 2.0:7, 5:15}

\end{signalsDE}

Figure 10: The \signalDE draw command. The red dots are custom anchors accessed with [name]-[anchor].

\signalDE*[options]{events or datafile}
The DE signal command has two versions: a starred (*) version taking as argument the path to
a file containing the input data, or the non-starred version which takes as argument the actual
data (events). In both cases the data needs to be formatted as

value1 : timestamp1, value2 : timestamp2, ... , valueN : timestampN

where timestampN > xmax. The options are:

20

name= the name of the signal.
trunc a flag activating value truncation to integers. Works only of all values of a signal are

numbers. Default is false.
last label a flag enabling the last value in a signal to be printed or not. Default is true.

5.3 The signalsCT environment

This environment creates a (simple) stacked plot of CT signals within a tikzpicture.environment

\begin{signalsCT}[options]{xmax}

body...

\end{signalsCT}

The body within the environment consists of a series of \signalCT commands. It requires
an xmax number which stands for the last timestamp plotted. The options are:options

name= the name of the TikZ element. Default is sigplot.
grid=step draws a dashed line every step time(stamps).
timestamp=step shows the time(stamp) above the plot at every step.
grid and time=step is equivalent to grid=step and timestamp=step.
label pos= position of the label within the plotted bar. Default is center.
signal sep=dist the vertical distance between two consecutive signals.
xscale=ratio, yscale=ratio scales the plot.
at= the position of the plot within the tikzpicture. Default is (0,0).
xshift=dist, yshift=dist, shift=coord a displacement in the respective direction.
anchor=anchor where this element should be anchored.
left of=coord, right of=coord, above of=coord, below of=coord positions the element ac-

cordingly.
inputs=coord, outputs=coord positions the element left of/right of the given coordinate.

\signalCT*[options]{events or datafile}
The CT signal command has two versions: a starred (*) version taking as argument the path to
a file containing the input data, or the non-starred version which takes as argument the actual
data (events). In both cases the data needs to be formatted as

value1 : timestamp1, value2 : timestamp2, ... , valueN : timestampN

where timestampN > xmax. The options are:

name= the name of the signal.
ordinate= draws the X axis (ordinate) on the value passed as argument.
outline a flag for drawing the outline for a signal. Default is false.
ymax=num, ymin=num the maximum and minimum values covered by the plot. Default is
ymin=0 and ymax=1.

line style= a style passed to the drawing tool.

21

2.1

−1.1

sig-ct1

0

2.1

−1.1

sig-ct2

0sig-ct3

0

2.1

−1.1

sig-ct4

0 1 2 3

n.e1n.w1

n.e2n.w2

n.e3n.w3

n.e4n.w4

\begin{tikzpicture}[]

\begin{signalsCT}[name=n, grid and time=1, xscale=.7, yscale=.7]{3.3}

\signalCT [name=sig-ct1, outline, ymin=-1.1, ymax=2.1, line style={ultra thick}]{

-1.0:0, -1.0:0.9999999776, 0.0:1.009999977376, 0.0:1.9999999552, 1.0:2.009999954976,

1.0:2.9999999328, 2.0:3.009999932576, 2.0:3.29999992608

}

\signalCT*[name=sig-ct2, outline, ymin=-1.1, ymax=2.1,draw ordinate]{ct-input1.flx}

\signalCT [name=sig-ct3, ymin=-1.1, ymax=2.1,draw ordinate, line style={ultra thick}]{

-1.0:0,-1.0:2.39999994624,0.0:2.409999946016,0.0:3.29999992608

}

\signalCT[name= sig-ct4, outline, ymin=-1.1, ymax=2.1,draw ordinate]{

1.0:0,1.0:0.009999999776, 1.0:1.39999996864, 0.0:1.409999968416, 0.0:2.79999993728,

-1.0:2.809999937056, -1.0:3.29999992608

}

\end{signalsCT}

Figure 11: The \signalCT draw command. The red dots are custom anchors accessed with [name]-[anchor].

22

6 Libraries of additional pictures

The ForSyDe–LATEX utilities provide a set of additional libraries for drawing pictures used in
related publications or documentation. These can be imported as regular TikZ libraries, in
association with the forsyde-tikz package.

\usepackage[tikz]{forsyde}

...

\usetikzlibrary{library}

where library is named along the lines of forsyde.pictures.<name>.
The following libraries are not extensively documented but rather listed along with the main

commands and an example of usage. For more information check their source code.

6.1 The forsyde.pictures.layered library

This library provides commands for depicting the concept of layered structure introduced in the
ForSyDe–Atom project.

\begin{tikzpicture}

\forsydeAtomMakeLayers[]{%

Function Layer:Function,%

Behavior Layer:Behavior,%

MoC Layer:Process,%

Skeleton Layer:Process Network}

\node[] (value) at (layer0-center){%

\usebox{\forsydeAtomValue}};

\node[] (ext-value) at ($(layer1-center)!.5!(layer2-center)$) {%

\usebox{\forsydeAtomExtValue}};

\node[] (event) at ($(layer2-center)!.5!(layer3-center)$) {%

\usebox{\forsydeAtomTagExtValue}};

\forsydeAtomSignalArrow[width=4.2cm]{layer3-center}

\node[inner sep=0] (token) at (arrow-center) {%

\usebox{\forsydeAtomTagExtValue}};

\node[] at ($(token.east)!.5!(arrow-west)$) {%

\usebox{\forsydeAtomTagExtValue}};

\node[] at ($(token.west)!.5!(arrow-east)$) {%

\usebox{\forsydeAtomTagExtValue}};

\forsydeAtomSignalVector{layer4-rightpath}

\forsydeAtomHighlightLayer[green!30]{2}

\end{tikzpicture}

Fu

nct
ion

Layer

F
u
n
ct
io
n

Beh
avior

Layer

B
eh

a
vi
o
r

MoC Layer

P
ro
ce
ss

Skeleto
n Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
⊥

v
⊥
t

v
⊥
t

v
⊥
t

v
⊥
t

\forsydeAtomMakeLayers[options]{list of layers}
Creates a a picture of incremental layers wrapping each other, based on the list of labels, for-
matted in the following way:

inner label 0: outer label 0, inner label 1: outer label 1, ...

Each layer N, where N ∈ [0..n] has:

• a named referred to by other commands: layerN;

• defined coordinates/anchors: layerN-center, layerN-left, and layerN-right;

• defined paths: layerN-leftpath and layerN-rightpath.

23

The options are:

width= default is 3.8cm;
height= default is 1.8cm;
length= default is 1cm;

\forsydeAtomSignalArrow[options]{position}
Creates a a picture of wide arrow representing signal of events. The position is where the
arrow tip should point to. It has defined the following coordinates/anchors: arrow-south,
arrow-north, arrow-east, arrow-west, arrow-center. The options are:

left indent= default is 3pt;
right indent= default is 0pt;
label shift= default is -4ex;
layer radius= default is 2cm;

\forsydeAtomSignalVector{interesction path}
Is used after a \forsydeAtomSignalArrow command to draw at which layer interesction path

does a signal is transformed into a structure/vector of signals.

\forsydeAtomHighlightLayer[color]{layer number}
Highlights a layer by filling it with a background color. Default color is red.

The forsyde.pictures.layered library also holds a number of shapes defined as boxes.
These boxes are:

• \forsydeAtomValue

• \forsydeAtomExtValue

• \forsydeAtomTagValue

• \forsydeAtomTagExtValue

24

7 The forsyde-legacy package

This package offers an API for the legacy commands defined in older versions of the ForSyDe–LATEX
utilities. This way, documents compiled with old commands can be compiled with the newer
versions of their respective library.

7.1 forsyde-tikz v0.3 or prior

Although from v0.4 onward the draw commands have been heavily modified, the old commands
could be mapped to the new API.

\primitive[keys] {id}{pos}{label}

\primitiven[keys] {id}{pos}{label}

\leafstd[keys] {id}{pos}{label}

\leafcustom[keys] {id}{pos}

\compositestd[keys] {id}{clustered nodes}{label}

\compositebbox[keys] {id}{pos}{label}

\patterncluster[keys] {id}{clustered nodes}{label}

\patternnodestd[keys] {id}{pos}

\patternnodecustom[keys] {id}{pos}

7.2 forsyde-pc v0.3 or prior

This package is obsolete and used to hold helpers associated to some ForSyDeprocess construc-
tors.

\delay [moc=,f1=,inner sep=,reverse] {id}{pos}{label}

\delayn [moc=,f1=,f2=,inner sep=,reverse] {id}{pos}{label}

\map [moc=,f1=,inner sep=,reverse] {id}{pos}{label}

\comb [moc=,f1=,inner sep=,reverse] {id}{pos}{label}

\combII [moc=,f1=,inner sep=,reverse] {id}{pos}{label}

\combIII [moc=,f1=,inner sep=,reverse] {id}{pos}{label}

\combIV [moc=,f1=,inner sep=,reverse] {id}{pos}{label}

\scanl [moc=,f1=,f2=,inner sep=,reverse] {id}{pos}{label}

\scanlII [moc=,f1=,f2=,inner sep=,reverse] {id}{pos}{label}

\scanlIII [moc=,f1=,f2=,inner sep=,reverse] {id}{pos}{label}

\scanld [moc=,f1=,f2=,f3=,inner sep=,reverse]{id}{pos}{label}

\scanldII [moc=,f1=,f2=,f3=,inner sep=,reverse]{id}{pos}{label}

\scanldIII[moc=,f1=,f2=,f3=,inner sep=,reverse]{id}{pos}{label}

\moore [moc=,f1=,f2=,f3=,inner sep=,reverse]{id}{pos}{label}

\mooreII [moc=,f1=,f2=,f3=,inner sep=,reverse]{id}{pos}{label}

\mooreIII [moc=,f1=,f2=,f3=,inner sep=,reverse]{id}{pos}{label}

\mealy [moc=,f1=,f2=,f3=,inner sep=,reverse]{id}{pos}{label}

\mealyII [moc=,f1=,f2=,f3=,inner sep=,reverse]{id}{pos}{label}

\mealyIII [moc=,f1=,f2=,f3=,inner sep=,reverse]{id}{pos}{label}

\source [moc=,f1=,f2=,inner sep=,reverse] {id}{pos}{label}

\filter [moc=,f1=,f2=,inner sep=,reverse] {id}{pos}{label}

\hold [moc=,f1=,inner sep=,reverse] {id}{pos}{label}

\fillS [moc=,f1=,f2=,inner sep=,reverse] {id}{pos}{label}

\zip [moc=,reverse]{id}{pos}

\zipIII [moc=,reverse]{id}{pos}

\zipIV [moc=,reverse]{id}{pos}

\zipV [moc=,reverse]{id}{pos}

\zipVI [moc=,reverse]{id}{pos}

\unzip [moc=,reverse]{id}{pos}

\unzipIII[moc=,reverse]{id}{pos}

\unzipIV [moc=,reverse]{id}{pos}

25

\unzipV [moc=,reverse]{id}{pos}

\unzipVI [moc=,reverse]{id}{pos}

\domaininterface[moc=,reverse] {id}{pos}

\mocinterface [mocin=,mocout=,reverse]{id}{pos}

\composite[ni=,no=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\blackbox [ni=,no=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\farm [ni=,no=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\farmI [ni=,no=,f1=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\farmII [ni=,no=,f1=,f2=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\farmIII [ni=,no=,f1=,f2=,f3=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\farmIV [ni=,no=,f1=,f2=,f3=,f4=,inner xsep=,inner ysep=,reverse]{id}{included}{label}

\pipe [ni=,no=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\pipeI [ni=,no=,f1=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\pipeII [ni=,no=,f1=,f2=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\pipeIII [ni=,no=,f1=,f2=,f3=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\pipeIV [ni=,no=,f1=,f2=,f3=,f4=,inner xsep=,inner ysep=,reverse]{id}{included}{label}

\reduce [ni=,no=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\reduceI [ni=,no=,f1=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\reduceII [ni=,no=,f1=,f2=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\reduceIII[ni=,no=,f1=,f2=,f3=,inner xsep=,inner ysep=,reverse] {id}{included}{label}

\reduceIV [ni=,no=,f1=,f2=,f3=,f4=,inner xsep=,inner ysep=,reverse]{id}{included}{label}

\unzipx [reverse] {id}{position}

\zipx [reverse] {id}{position}

\unzipv [reverse] {id}{position}

\zipv [reverse] {id}{position}

\splitatv [f1=,reverse] {id}{position}

\catv [reverse] {id}{position}

\oddsv [reverse] {id}{position}

\evensv [reverse] {id}{position}

\reversev [reverse] {id}{position}

\groupv [reverse] {id}{position}

\concatv [reverse] {id}{position}

\filteridxv [f1=,reverse] {id}{position}

\gatherv [f1=,f2=,reverse] {id}{position}

\gatherAdpv [f1=,f2=,reverse] {id}{position}

\selectv [reverse] {id}{position}

\distributev[f1=,reverse] {id}{position}

\filterv [f1=,reverse] {id}{position}

\getv [f1=,reverse] {id}{position}

\visualoddsv [reverse]{id}{pos}

\visualevensv [reverse]{id}{pos}

\visualreversev[reverse]{id}{pos}

\visualgroupv [reverse]{id}{pos}

\visualconcatv [reverse]{id}{pos}

26

	Introduction
	Installation & usage
	The forsyde-tikz package
	Main nodes
	Draw commands
	Shapes
	Helper options

	Paths
	Helper commands

	Utility commands
	Further customizing the environment

	The forsyde-math package
	Operator symbols
	Math commands
	Font map

	The forsyde-plot package
	The signalsSY environment
	The signalsDE environment
	The signalsCT environment

	Libraries of additional pictures
	The forsyde.pictures.layered library

	The forsyde-legacy package
	forsyde-tikz v0.3 or prior
	forsyde-pc v0.3 or prior

