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CHAPTER 1
Introduction

In this chapter we introduce the purpose, organization and usage of this document,
as well as brief instructions and references for helping to set up the ForSyDe-Atom
libraries. The scope is to facilitate the reader’s progression through this document.

1.1 Purpose & organization

This book is a living document which gathers material related to ForSyDe-Atom and binds it
in form of a user manual. Most of the text contained by this book originates from actual inline or
literate source code documentation, in form of examples, tutorials, reports and even library API
documentation. This means that this document evolves with the ForSyDe-Atom project itself
and is periodically updated.

ForSyDe-Atom is a shallow-embedded DSL in the functional programming language Haskell
for modeling cyber-physical and parallel systems. It enforces a disciplined way of modeling by
separating the manifold concerns of systems into orthogonal layers. The ForSyDe-Atom for-
mal framework aims to providing (where possible) a minimum set of primary common building
blocks for each layer called atoms, capturing elementary semantics. Even so, the modeling frame-
work provides library blocks and modules commonly used in CPS defined in terms of patterns of
atoms. For more information on ForSyDe-Atom itself, please consult the associated scientific
publications or the API extended documentation1.

This document is structured in two parts. The first part gathers examples, tutorials and
experiments in a learning progression. Each chapter associated with (and actually generated
from) a Haskell Cabal project included in the forsyde-atom-examples2 repository. This means
that the first part of the book is meant to be read in parallel with running the associated example
project which conveniently exports functions to test the listed code “on-the-fly”. The second part
of the book is the actual inline API documentation of ForSyDe-Atom generated with Haddock,
which serves also as an extended library report and provides information both on theoretical and
implementation issues.

If for any reason you have difficulties following the document or you encounter bugs
or discrepancies in the code and text do not hesitate to contact the author(s) or
maintainer(s) on GitHub or by email.

1.2 Getting ForSyDe-Atom

The ForSyDe-Atom EDSL can be downloaded from https://github.com/forsyde/forsyde-atom.
The main page contains enough information for acquiring the dependencies and installing the li-
brary on your own. However, each example project from the forsyde-atom-examples repository

1currently available online at https://forsyde.github.io/forsyde-atom/
2available online at https://github.com/forsyde/forsyde-atom-examples

1

https://www.haskell.org/cabal/
https://www.haskell.org/haddock/
https://github.com/forsyde/forsyde-atom
https://github.com/forsyde/forsyde-atom-examples
https://forsyde.github.io/forsyde-atom/
https://github.com/forsyde/forsyde-atom-examples
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comes with a set of installation scripts written for user convenience, which should be enough for
traversing this manual.

Attention!

Be advised that different chapters of the book have been written during different develop-
ment stages of ForSyDe-Atom and are compatible with different library releases. The
code listed throughout the book might be incompatible with the latest release. We strongly
recommend using the installation scripts included in each project associated with a chapter,
which acquire and install the right dependencies in a local sandbox.

Provided you have an OS installation where the minimum dependencies (GNU make, a Git
CLI client, Haskell Platform and cabal-install) are working and accessible by your user profile,
to run the getting-started example associated with chapter 2, you simply need to type in the
terminal:

# download the examples
git clone https://github.com/forsyde/forsyde-atom-examples.git

# change directory to the desired project folder
cd forsyde-atom-examples/getting-started

# install the project (and dependencies) in a sandbox
make install

# open an interpreter session with the examples loaded
cabal repl

1.3 Using this document

Disclaimer

The document assumes that the reader is familiar with the syntax of Haskell and the usage
of a Haskell interpreter (e.g. ghci). Otherwise, we recommend consulting at least the
introductory chapters of one of the following books by Lipovača, 2011 and Hutton, 2016 or
other recent books in Haskell.

Most of this document has been created using literate programming. This means that all code
shown in the listings is compatible with the ForSyDe-Atom library version mentioned at the
beginning of each chapter. Throughout the document you will find two listing styles. This style

−− | API documentation comment
myIdFunc :: a → a
myIdFunc = id

shows source code as it is found in the implementation files. We have taken the liberty to display
some code characters as their literate equivalent (e.g. -> is shown as →, \ is shown as λ, and so
on).

This style

Prelude> 1 + 1
2

suggests interactive commands given by the user in a terminal or an interpreter session. The
listing above shows a typical ghci session, where the string after the prompter symbol > suggests
the user input (e.g. 1 + 1). Whenever relevant, the expected output is printed one row below
that (e.g. 2).

The code examples are bundled as separate Cabal packages and is provided as libraries meant
to be loaded in an interpreter session in parallel with reading this document. Detailed instructions

https://www.gnu.org/software/make/
https://git-scm.com/downloads
https://git-scm.com/downloads
https://www.haskell.org/platform/
https://www.haskell.org/cabal/download.html
https://www.haskell.org/cabal/
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on how to install the packages can be found in the README.md file in each project. The best way to
install the packages is within sandboxed environments with all dependencies taken care of, usually
scripted within the make commands. After a successful installation, to open an interpreter session
pre-loaded with the main sandboxed library, you just need to type in the following command in a
terminal from the package root path (the one containing the .cabal file):
# cabal repl

Each section of this document contains a small example written within a library module, like:
module X where

One can access all functions in module X by importing it in the interpreter session, unless otherwise
noted (e.g. library X is re-exported by Y).
*Y> import X

Now suppose that function myIdFunc above was defined in module X, then one would have direct
access to it, e.g.:
*Y X> :t myIdFunc
myIdFunc :: a -> a
*Y X> myIdFunc 3
3

By all means, the code for myIdFunc or any source code for that matter can be copied/pasted in
a custom .hs file and compiled or used in any relevant means. The current format was chosen
because it is convenient to “get your hands dirty” quickly without thinking of issues associated
with compiler suites.

A final tip: if you think that the full name of X is polluting your prompter or is hard to use,
then you can import it using an alias:
*Y> import Extremely.Long.Full.Name.For.X as ShortAlias
*Y ShortAlias>

1.4 References

Hutton, Graham (2016). Programming in Haskell. 2nd. New York, NY, USA: Cambridge University
Press. isbn: 1316626229, 9781316626221.

Lipovača, Miran (2011). Learn You a Haskell for Great Good!: A Beginner’s Guide. 1st. San
Francisco, CA, USA: No Starch Press. isbn: 1593272839, 9781593272838.
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CHAPTER 2
Getting Started with ForSyDe-Atom

This chapter is meant to introduce the reader to using the basic features of ForSyDe-
Atom library as a Haskell EDSL for modeling and simulating embedded and cyber-
physical systems. It is not meant to substitute the API documentation nor provide
any detail on the theoretical foundation, and it references external documents when-
ever necessary. It starts from modeling basics, goes through a toy example seen from
different perspectives, and into more advanced features like creating custom patterns.

Contents
2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Visualizing your data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Toy example: a focus on MoCs . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Test input signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 SY instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 DE instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 CT instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 SDF instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.6 Polymorphic instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Making your own patterns . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Info
Compatibility : ForSyDe-Atom version 0.2.1

Repository : https://github.com/forsyde/forsyde-atom-examples
Path : <repo_root>/getting-started

Other deps. : none

2.1 Goals

The main goals of this chapter are:

• introduce the reader to basic modeling features such as: importing library modules, using
a Haskell interpreter, using helper functions, composing functions, designing with layers,
understanding type signatures, using basic input/output.

• provide a step-by-step guide for modeling a toy system expressing concerns from four layers:
function, extended behavior, model of computation and recursive/parallel composition.

7

https://github.com/forsyde/forsyde-atom/releases/tag/0.2.1.1
https://github.com/forsyde/forsyde-atom-examples
https://github.com/forsyde/forsyde-atom-examples/tree/master/getting-started
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• describe the above system as executing with the semantics dictated by four MoCs: syn-
chronous dataflow (SDF), synchronous (SY), discrete event (DE) and continuous time (CT).
For this purpose the system will be first instantiated multiple times using specialized helpers,
and then described as a network of patterns overloaded with MoC semantics by injecting
the right data types, thus exposing the polymorphism of atoms.

• briefly introduce the concepts of atoms and patterns and their usage and guide through
creating custom patterns and behaviors.

2.2 The basics

This section introduces some basic modeling features of ForSyDe-Atom, such as helpers and
process constructors. The module is re-exported by AtomExamples.GettingStarted which is
pre-loaded in a repl session, so there is no need to import it manually.

module AtomExamples.GettingStarted.Basics where

We usually start a ForSyDe-Atom module by importing the ForSyDe.Atom library which
provides some commonly used types and utilities.

import ForSyDe.Atom

In this section we will only test synchronous processes as patterns defined in the MoC layer.
An extensive library of types, utilities and helpers for SY process constructors can be used by
importing the ForSyDe.Atom.MoC.SY module.

import ForSyDe.Atom.MoC.SY

Next we import the Absent extended behavior, defined in the ExB layer, to get a glimpse
of modeling using multiple layers. As with the previous, we need to specifically import the
ForSyDe.Atom.ExB.Absent library to access the helpers and types.

import ForSyDe.Atom.ExB (res11, res21)
import ForSyDe.Atom.ExB.Absent

The signal is the basic data type defined in the MoC layer, and it encodes a tag system which
describes time, causality and other key properties of CPS. In the case of SY MoC, a signal defines
a total order between events. There are several ways to instantiate a signal in ForSyDe-Atom.
The most usual one is to create it from a list of values using the signal helper. By studying its
type signature in the online API documentation, one can see that it needs a list of elements of
type a as argument, so let us create a test signal testsig1:

testsig1 = signal [1,2,3,4,5]

You can print or check the type of testsig1

*AtomExamples.GettingStarted> testsig1
{1,2,3,4,5}
*AtomExamples.GettingStarted> :t testsig1
testsig1 :: ForSyDe.Atom.MoC.SY.Core.Signal Integer

The type of testsig1 tells us that the signal helper created a SY Signal carrying Integer
values. If you are curious, you can print some information about this mysterious type

*AtomExamples.GettingStarted> :info ForSyDe.Atom.MoC.SY.Core.Signal
type ForSyDe.Atom.MoC.SY.Core.Signal a =

Stream (ForSyDe.Atom.MoC.SY.Core.SY a)
-- Defined in ForSyDe.Atom.MoC.SY.Core

which shows that it is in fact a type alias for a Stream of SY events. If this became too confusing,
please read the MoC layer overview in this online API documentation page. Unfortunately the
names printed as interactive information are verbose and show their exact location in the structure
of ForSyDe-Atom. We do not care about this in the source code, since we imported the SY
library properly. To benefit from the same treatment in the interpreter session, we need to do the
same:

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-ExB.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-ExB-Absent.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-Stream.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom.html


Dra
ft

9 2.2. The basics

*AtomExamples.GettingStarted> import ForSyDe.Atom.MoC.SY as SY
*AtomExamples.GettingStarted SY> :info Signal
type Signal a = Stream (SY a)

-- Defined in ForSyDe.Atom.MoC.SY.Core

Another way of creating a SY signal is by means of a generate process, which generates an
infinite signal from a kernel value. By studying the online API documentation, you can see
that the SY library provides a number of helpers for this particular process constructor, the one
generating one output signal being generate1. Let us first check the type signature for this helper
function:

*AtomExamples.GettingStarted SY> :t generate1
generate1 :: (b1 -> b1) -> b1 -> Signal b1

So basically, as suggested in the online API documentation, this helper takes a "next state"
function of type a -> a, a kernel value of type a, and it generates a signal of tyle Signal a. With
this in mind, let us create testsig2:

testsig2 = generate1 (+1) 0

Printing it would jam the terminal... we were serious when we said "infinite"! This is why
you need to select a few events from the beginning to see whether the signal generator behaves
correctly. To do so, we use the takeS utility:

*AtomExamples.GettingStarted SY> takeS 10 testsig2
{0,1,2,3,4,5,6,7,8,9}
*AtomExamples.GettingStarted SY> :t testsig2
testsig2 :: Signal Integer

generate was a process with no inputs. Now let us try a process that takes the two signals
testsig1 and testsig2 and sums their synchronous events. For this we use the combinatorial
process comb, and the SY constructor we need, with two inputs and one output is provided by
comb21. Again, checking the type signature confirms that this is the helper we need:

*AtomExamples.GettingStarted SY> :t comb21
comb21 :: (a1 -> a2 -> b1) -> Signal a1 -> Signal a2 -> Signal b1

So let us instantiate testproc1:

testproc1 = comb21 (+)

Calling it in the interpreter with testsig1 and testsig2 as arguments, it returns:

*AtomExamples.GettingStarted SY> testproc1 testsig2 testsig1
{1,3,5,7,9}

which is the expected output, as based on the definition of the SY MoC, all events following
the sixth one from testsig2 are not synchronous to any event in testsig1.

testproc1
+

SY.comb

+1

SY.comb

testsig2

0,1,2,3,4,...

testsig1

1,2,3,4,5
1,2,3,4,5,...

2,4,6,8,10

Figure 2.1: Simple process network as composition of processes

Suppose we want to increment every event of testsig2 with 1 before summing the two signals.
This particular behavior is described by the process network in fig. 2.1. There are multiple ways
to instantiate this process network, mainly depending on the coding style of the user:

testpn1 = comb21 (+) . comb11 (+1)
testpn2 s2 s1 = testproc1 (comb11 (+1) s2) s1
testpn3 s2 = testproc1 (comb11 (+1) s2)
testpn4 s2 s1 = let s2’ = comb11 (+1) s2

in testproc1 s2’ s1
testpn5 s2 = comb21 (+) s2’

where s2’ = comb11 (+1) s2

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
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All of the above functions are equivalent. testpn1 uses the point-free notation, i.e. the function
composition operator, between two partially-applied process constructors. testpn2 makes use
of the previously-defined testproc1 to enforce a global hierarchy. testpn3 is practically the
same, but it exposes the partial application mechanism, by not making the s1 argument explicit.
testpn4 makes use of local hierarchy in form of a let-binding, while testpn5 does so through a
where clause. Printing them only confirms their equivalence:
*AtomExamples.GettingStarted SY> testpn1 testsig2 testsig1
{2,4,6,8,10}
*AtomExamples.GettingStarted SY> testpn2 testsig2 testsig1
{2,4,6,8,10}
*AtomExamples.GettingStarted SY> testpn3 testsig2 testsig1
{2,4,6,8,10}
*AtomExamples.GettingStarted SY> testpn4 testsig2 testsig1
{2,4,6,8,10}
*AtomExamples.GettingStarted SY> testpn5 testsig2 testsig1
{2,4,6,8,10}

One key concept of ForSyDe-Atom is the ability to model different aspects of a system as
orthogonal layers. Up until now we only experimented with two layers: the MoC layer, which
concerns timing and synchronization issues, and the function layer, which concerns functional
aspects, such as arithmetic and data computation. Let us rewind which DSL blocks we have used
an group them by which layer they belong:

• the Integer values carried by the two test signals (i.e. 0, 1, ...) and the arithmetic
functions (i.e. (+) and (+1)) belong to the function layer.

• the signal structures for testsig1 and testsig2 (i.e. Signal a) the utility (i.e. signal)
and the process constructors (i.e. generate1, comb11 and comb21) belong to the MoC layer.

It is easy to grasp the concept of layers once you understand how higher order functions work,
and accept that ForSyDe-Atom basically relies on the power of functional programming to define
structured abstractions. In the previous case entities from the MoC layer "wrap around" entities
from the function layer like in fig. 2.2, "lifting" them into the MoC domain. Unfortunately it is
not that straightforward to see from the code syntax which entity belongs to which layer. For
now, their membership can be determined solely by the user’s knowledge of where each function
is defined, i.e. in which module. Later in this guide we will make this apparent from the code
syntax, but for now you will have to trust us.
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Figure 2.2: Layered structure of the pro-
cesses in fig. 2.1
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Figure 2.3: Layered structure of the processes
describing absent events

As a last exercise for this section we would like to extend the behavior of the system in fig. 2.1
in order to describe whether the events are happening or not (i.e. are absent or present) and act
accordingly. For this, ForSyDe-Atom defines the Extended Behavior (ExB) layer. As suggested
in fig. 2.3, this layer extends the pool of values with symbols denoting states which would be
impossible to describe using normal values, and associates some default behaviors (e.g. protocols)
over these symbols.
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The two processes fig. 2.1 are now defined below as testAp1 and testAp2. This time, apart
from the functional definition (name = function) we specify the type signature as well (name ::
type), which in the most general case can be considered a specification/contract of the interfaces
of the newly instantiated component. Both type signatures and function definitions expose the
layered structure suggested in fig. 2.3. As specific ExB type, we use AbstExt and as behavior
pattern constructor we choose a default behavior expressing a resolution res.

testAp1 :: Num a
=> Signal (AbstExt a) −− ^ input signal of absent−extended values
→ Signal (AbstExt a) −− ^ output signal of absent−extended values

testAp1 = comb11 (res11 (+1))

testAp2 :: Num a
=> Signal (AbstExt a) −− ^ first input signal of absent−extended values
→ Signal (AbstExt a) −− ^ second input signal of absent−extended values
→ Signal (AbstExt a) −− ^ output signal of absent−extended values

testAp2 = comb21 (res21 (+))

Now all we need is to create some test signals of type Signal (AbstExt a). One way is to use
the signal utility like for testAsig1, but this forces to make use of AbstExt’s type constructors.
Another way is to use the library-provided process constructor helpers, such as filter’, like for
testAsig2.

testAsig1 = signal [Prst 1, Prst 2, Abst, Prst 4, Abst]
testAsig2 = filter’ (/=4) testsig2

Printing out the test signals in the interpreter session this is what we get:

*AtomExamples.GettingStarted SY> testAsig1
{1,2,⊥,4,⊥}
*AtomExamples.GettingStarted SY> takeS 10 testAsig2
{0,1,2,3,⊥,5,6,7,8,9}

Trying out testAp1 on testAsig1:

*AtomExamples.GettingStarted SY> testAp1 testAsig1
{2,3,⊥,5,⊥}

Everything seems all right. Now testing testAp2 on testAsig1 and testAsig2:

*AtomExamples.GettingStarted SY> takeS 10 $ testAp2 testAsig2 testAsig1
{1,3,*** Exception: [ExB.Absent] Illegal occurrence of an absent and present event

Uh oh... Actually this is the correct behavior of a resolution function for absent events, as
defined in synchronous reactive languages such as Lustre Halbwachs et al., 1991. Let us remedy
the situation, but this time using another library-provided process constructor, when’.

testAsig2’ = when’ mask testsig2
where

mask = signal [True, True, False, True, False]

Now printing testAp2 looks better:

*AtomExamples.GettingStarted SY> testAsig2’
{0,1,⊥,3,⊥}
*AtomExamples.GettingStarted SY> testAp2 testAsig2’ testAsig1
{1,3,⊥,7,⊥}

And recreating the process network from fig. 2.1 gives the expected result:

testApn1 = testAp2 . testAp1

*AtomExamples.GettingStarted SY> testApn1 testAsig2’ testAsig1
{2,4,⊥,8,⊥}

This section has provided a crash course in modeling with ForSyDe-Atom, with focus on a
few practical matters, such as using library-provided helpers and constructors and understanding
the role of layers. The following sections delve deeper into modeling concepts such as atoms and
making use of ad-hoc polymorphism.

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-ExB-Absent.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-ExB.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
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2.2.1 Visualizing your data
Up until now, we have made use of the Show instance of the ForSyDe-Atom data types to
print out signals on the terminal screen. While this remains the main way to test if a model is
working properly, there are alternative ways to plot data. This section introduces the reader to
the ForSyDe.Atom.Utility.Plot library of utilities for visualizing signals or other data types.

The functions presented in this section are defined in the following module, which is exported
by AtomExamples.GettingStarted.
module AtomExamples.GettingStarted.Plot where

We will be using the signals defined in the previous section, so let us import the corresponding
module:
import AtomExamples.GettingStarted.Basics

And, as mentioned, we need to import the library with plotting utilities:
import ForSyDe.Atom.Utility.Plot

Upon consulting the API documentation for this module, you might notice that most utilities
input a so-called PlotData type, which is an alias for a complex structure carrying configuration
parameters, type information and data samples. Using Haskell’s type classes, ForSyDe-Atom is
able to provide few polymorphic utilities for converting most of the useful types into PlotData.

For example, the prepare function takes a "plottable" data type (e.g. a signal of values),
and a Config type, and returns PlotData. The Config type is merely a record of configuration
parameters useful further down in the plotting pipeline. At the time of writing this report1, a
configuration record looked like this:
config =

Cfg { path = "./fig" −− path where the eventual data files are dumped
, file = "plot" −− base name of the eventual files generated
, rate = 0.01 −− sampling rate if relevant (e.g. ignored by SY signals).

−− Useful just for e.g. explicit−timed signals.
, xmax = 20 −− maximum x coordinate. Necessary for infinite signals.
, labels = ["s1","s2"] −− labels for all signals passed to be plotted.
, verbose = True −− prints additional messages for each utility.
, fire = True −− if relevant, fires a plotting or compiling program.
, mklatex = True −− if relevant, dumps a LaTeX script loading the plot.
, mkeps = True −− if relevant. dumps a PostScript file with the plot.
, mkpdf = True −− if relevant, dumps a PDF file with the plot.
}

ForSyDe.Atom.Utility.Plot provides several of these pre-made configuration objects, which
can be modified on-the-fly using Haskell’s record syntax, as you will see further on.

Let us see again the signals testsig1 and testsig2 defined in the previous section:
λ> testsig1
{1,2,3,4,5}
λ> takeS 20 testsig2
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}

The utility showDat prints out sampled data on the terminal, as pairs of X and Y coordinates:
show1 = showDat $ prepare config testsig1
show2 = let cfg = config {xmax=15, labels=["testsig1","testsig2"]}

in showDat $ prepareL cfg [testsig1,testsig2]

λ> show1
s1 =

0 1.0
1 2.0
2 3.0
3 4.0
4 5.0

<
λ> show2

1ForSyDe-Atom v0.2.1

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
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testsig1 =
0 1.0
1 2.0
2 3.0
3 4.0
4 5.0

testsig2 =
0 0.0
1 1.0
2 2.0
3 3.0
4 4.0
5 5.0
6 6.0
7 7.0
8 8.0
9 9.0
10 10.0
11 11.0
12 12.0
13 13.0
14 14.0

The function dumpDat dumps the data files in a path specified by the configuration object.
Based on the config object instantiated earlier, after calling the following function you should
see a new folder called fig in the current path, with two new .dat files.
dump2 = let cfg = config {xmax=15, labels=["testsig1","testsig2"]}

in dumpDat $ prepareL cfg [testsig1,testsig2]

λ> dump2
Dumped testsig1, testsig2 in ./fig
["./fig/testsig1.dat","./fig/testsig2.dat"]

The plot library also has a few functions which create and (optionally) fire Gnuplot scripts. In
order to make use of them, you need to install the dependencies mentioned in the API documen-
tation. For example, using the function plotGnu creates the following plot:
plot2 = let cfg = config {xmax=8, labels=["testsig1","testsig2"]}

in plotGnu $ prepareL cfg [testsig1,testsig2]

Different input data creates different types of plots, as we will see in future sections.
One can also generate LATEX code which is meant to be compiled with the ForSyDe-LATEX

package, more specifically its signal plotting library. Check the user manual for more details on
how to install the dependencies and how to use the library itself. Naturally, there is a function
showLatex which prints out the command for a signals environment defined in ForSyDe-LATEX:
latex1 = let cfg = config {xmax=8, labels=["testsig1","testsig2"]}

in showLatex $ prepareL cfg [testsig1,testsig2]

λ> latex1
\begin{signalsSY}[]{8.0}

\signalSY[]{1.0:0,2.0:1,3.0:2,4.0:3,5.0:4}
\signalSY[]{0.0:0,1.0:1,2.0:2,3.0:3,4.0:4,5.0:5,6.0:6,7.0:7}

\end{signalsSY}
<

Also, there is a command plotLatex for generating a standalone LATEX document and, if
possible, compiling it with pdflatex. For example, calling the following function generates the
image from section 2.2.1.
latex2 = let cfg = config {xmax=8, labels=["testsig1","testsig2"]}

in plotLatex $ prepareL cfg [testsig1,testsig2]

The SY signal plot is nothing spectacular, but wraps the events in a matrix of nodes which
can be embedded into a more complex TikZ figure. Other signals produce other plots. Most
generated plots will need manual tweaking in order to look good. Check the user manual on how
to customize each plot.

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
http://www.gnuplot.info/
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
https://github.com/forsyde/forsyde-latex
https://github.com/forsyde/forsyde-latex/blob/master/extras/refman.pdf
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
https://github.com/forsyde/forsyde-latex
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Utility-Plot.html
https://github.com/forsyde/forsyde-latex/blob/master/extras/refman.pdf
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Figure 2.4: SY signal in Gnuplot as a impulse plot
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Figure 2.5: SY signal plot in ForSyDe-LATEX as a matrix of nodes

2.3 Toy example: a focus on MoCs

This example has been used as a case study for introducing the new concepts of ForSyDe-Atom
in the paper of Ungureanu and Sander, 2017. It describes the simple system from fig. 2.6b which
exposes four layers, structured like in fig. 2.6a. This system is then fed vectors of signals describing
different MoCs and its response is observed. In figs. 2.6c to 2.6f some possible projections on the
different layers are depicted. For now they are used just as trivia, and you need not bother with
them that much.This is a synthetic example meant to introduce as many concepts as possible in a short amount
of time and, among others, it highlights:

• the power of partial application for creating parameterized structures, such as the process
network for stage1.

• alternative designs for the same toy system to show the effect of MoCs. First it is instantiated
using different process constructor helpers defined for each MoC separately. Afterwards it
is written as one single polymorphic instance using MoC layer patterns, overloaded with
execution semantics in accordance with the tag system injected into the system.

For the sake of brevity, we also provide the functional description in the language introduced
by Ungureanu and Sander, 2017 in eqs. (2.1)–(2.5) and table 2.1. Do not bother much about this
notation either, as this exact definition will appear in the code in a more “human readable” form.

toy : 〈V 〉 → 〈S〉 → S (2.1)
toy〈i〉〈s〉 = whenm(Γw`wb) ◦ reduces(rm) ◦ maps(pcm)〈i〉〈s〉
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Figure 2.6: Views and projections for the toy system

where

whenm(Γw`wb)(s) = ((⊥ �) ◦ (Γw`wb))⊕ s (2.2)
rm(x, y) = Γr`rb ⊕ (x, y) (2.3)

maps(pcm)〈v〉〈s〉 = pcm 2 〈v〉3 〈s〉 (2.4)
pcm(x, y) = moorem(Γns`nsb, Γod`odb, x)(y) (2.5)

Table 2.1: Contexts, Functions and Initial Tokens for the System in Eq. (2.1)

MoC Γw` wb(x) Γr ` rb(x, y) Γns ` nsb(x, y) Γod`odb(x) 〈i〉 = 〈(t, v)〉

SDF2 2,2`(x1 < 0, x2 < 0)� (1,1),1 `(x1 + y1)� (1,2),1`(x1 + y1 + y2)� 1,1` x1� 〈 ( ,−1) ( , 1) ( ,−1) ( , 1) 〉
SY ` (x < 0)� ` (x+ y)� ` (x+ y)� ` x � 〈 ( ,−1) ( , 1) ( ,−1) ( , 1) 〉
DE ` (x < 0)� ` (x+ y)� ` (x+ y)� ` x � 〈 (0.5,−1) (1.4, 1) (1.0,−1) (1.4, 1) 〉
CT ` (x < 0)� ` (x+ y)� ` (x+ y)� ` x � 〈(1, λt→ −1) (1.4, λt→ 1) (1, λt→ −1) (1.4, λt→ 1)〉

2ΓSDF = (consumption rate for first input[, consumption rate for second input]), production rate
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2.3.1 Test input signals
In the following examples we will use a set of test signals defined in the following module, which
is also re-exported by AtomExamples.GettingStarted (i.e. you don’t need to import it):
module AtomExamples.GettingStarted.TestSignals where

The test signals need to define tag systems belonging to different MoCs. Each MoC has an
own dedicated module under ForSyDe.Atom.MoC which defines atoms, patterns, types and utilities.
Just like in the previous section, we need to import the needed modules. This time we name them
using short aliases, to disambiguate between the different DSL items, often sharing the same name,
but defined in different places.
import ForSyDe.Atom.ExB.Absent (AbstExt(..))
import ForSyDe.Atom.MoC.SY as SY
import ForSyDe.Atom.MoC.DE as DE
import ForSyDe.Atom.MoC.CT as CT
import ForSyDe.Atom.MoC.SDF as SDF
import ForSyDe.Atom.MoC.Time as T
import ForSyDe.Atom.MoC.TimeStamp as Ts
import ForSyDe.Atom.Skeleton.Vector as V
import ForSyDe.Atom.Utility.Plot

Let the signals sdf1–sdf4 denote four SDF signals, i.e. sequences of events. Instead of using
the signal utility, we use readSignal which reads a string, tokenizes it and converts it to a SDF
signal. This utility function needs to be "steered" into deciding which data type to output so in
order to specify the type signature we use the inline Hakell syntax name = definition :: type.
All events, although extended, are present.
sdf1 = SDF.readSignal "{ 1, 1, 1, 1, 1, 1}" :: SDF.Signal (AbstExt Int)
sdf2 = SDF.readSignal "{−1, 1,−1, 1,−1, 1}" :: SDF.Signal (AbstExt Int)
sdf3 = SDF.readSignal "{ 0, 0, 1, 1, 0 }" :: SDF.Signal (AbstExt Int)
sdf4 = SDF.readSignal "{−1,−1,−1,−1,−1 }" :: SDF.Signal (AbstExt Int)

Similarly, let the signals sy1–sy4 denote four SY signals, i.e. all events are synchronized with
each other. We use the SY version of readSignal, also "steered" by declaring the types inline,
and all events are also present.
sy1 = SY.readSignal "{ 1, 1, 1, 1, 1, 1}" :: SY.Signal (AbstExt Int)
sy2 = SY.readSignal "{−1, 1,−1, 1,−1, 1}" :: SY.Signal (AbstExt Int)
sy3 = SY.readSignal "{ 0, 0, 1, 1, 0 }" :: SY.Signal (AbstExt Int)
sy4 = SY.readSignal "{−1,−1,−1,−1,−1 }" :: SY.Signal (AbstExt Int)

For the DE signals de1–de4 we need to specify for each event an explicit tag (i.e. timestamp),
as required by the DE tag system. For this, the DE version of readSignal reads each event using
the syntax value@timestamp. Needless to say, all events are also present.
de1 = DE.readSignal "{ 1@0 }":: DE.Signal (AbstExt Int)
de2 = DE.readSignal "{−1@0, 1@0.7,−1@1.4, 1@2.1,−1@2.8, 1@3.5}":: DE.Signal (AbstExt Int)
de3 = DE.readSignal "{ 0@0, 1@1.4, 0@2.8 }":: DE.Signal (AbstExt Int)
de4 = DE.readSignal "{−1@0 }":: DE.Signal (AbstExt Int)

Let ct1–ct4 denote four CT signals. As the events in a CT signal are themselves continuous
functions of time, we cannot specify them as mere strings, thus we cannot use a readSignal utility
any more. This time we will use the CT version of the signal utility, where each event is specified
as a tuple (timestamp, f(t)), and can be considered as a continuous sub-signal. For representing
time we use an alias Time for Rational, defined in the ForSyDe.Atom.MoC.Time. This module
also contains utility functions of time, such as the constant function const or the sine sin. We
define local functions to wrap the type returned by a CT subsignal into an AbstExt type.
pconst = T.const . Prst
ct1 = CT.signal [(0,pconst 1)] :: CT.Signal (AbstExt Time)
ct2 = CT.signal [(0,Prst . (λt → T.sin (T.pi ∗ t)))] :: CT.Signal (AbstExt Time)
ct3 = CT.signal [(0,pconst 0),(1.4,pconst 1),(2.8,pconst 0)] :: CT.Signal (AbstExt Time)
ct4 = CT.signal [(0,pconst (−1))] :: CT.Signal (AbstExt Time)

Finally, we need to bundle these signals into vectors of signals, to feed into the toy system
from fig. 2.6b and eq. (2.1). For this purpose we pass the four signals of each MoC as a list to the
vector utility.

https://forsyde.github.io/forsyde-atom/
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SDF.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SDF.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SDF.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-DE.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-DE.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-CT.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-CT.html
https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-Ratio.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-Time.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-Time.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-Time.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
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vsdf = V.vector [sdf1, sdf2, sdf3, sdf4] :: V.Vector (SDF.Signal (AbstExt Int))
vsy = V.vector [ sy1, sy2, sy3, sy4] :: V.Vector ( SY.Signal (AbstExt Int))
vde = V.vector [ de1, de2, de3, de4] :: V.Vector ( DE.Signal (AbstExt Int))
vct = V.vector [ ct1, ct2, ct3, ct4] :: V.Vector ( CT.Signal (AbstExt Time))

Now we need to create for each MoC the vectors with the initial states for the Moore machines,
i.e. 〈i〉 from table 2.1. For SDF, SY and DE we are also making use of the fact that the defined
data types are Readable. The data types that we need within the vectors are in accordance to
the moore process constructor helpers defined in each module, so be sure to check the online API
documentation to understand why we need those particular types. For example, SDF requires
a partition (list) of values as initial states whereas DE apart from a value it requires also the
duration of the first event. For the CT vector, as before, we cannot read functions as string, so we
use the vector utility. ict also shows the usage of the milisec utility which converts an integer
into a timestamp.
isdf = read "<[−1],[ 1],[−1],[ 1]>" :: V.Vector [AbstExt Int]
isy = read "<(−1), 1, (−1), 1 >" :: V.Vector (AbstExt Int)
ide = read "<(1,−1),(1.4, 1),(1.0,−1),(1.4, 1)>"

:: V.Vector (TimeStamp, AbstExt Int)
ict = V.vector [

(Ts.milisec 1000, pconst (−1)),
(Ts.milisec 1400, pconst 1 ),
(Ts.milisec 1000, pconst (−1)),
(Ts.milisec 1400, pconst 1 )] :: V.Vector (TimeStamp, Time → AbstExt Time)

For the polymorphic instance in section 2.3.6 we need to provide the initial states as wrapped
in signals, so we create unit signals:
sisdf = SDF.signal <$> isdf
sisy = SY.unit <$> isy
side = DE.unit <$> ide
sict = CT.unit <$> ict

Finally, let us instantiate some plotting utilities, to test the different signals throughout the
experiments:
plot until lbls = plotGnu . prepare defaultCfg {xmax=until, labels=lbls, rate=0.01}
latex until lbls = plotLatex . prepare defaultCfg {xmax=until, labels=lbls, rate=0.01}
plotV until lbls = plotGnu . prepareV defaultCfg {xmax=until, labels=lbls, rate=0.01}
latexV until lbls = plotLatex . prepareV defaultCfg {xmax=until, labels=lbls, rate=0.01}

2.3.2 SY instance

The SY instance of the toy system is created using process constructor helpers defined in ForSyDe.Atom.MoC.SY,
and is defined in the following module (re-exported by AtomExamples.GettingStarted).
module AtomExamples.GettingStarted.SY where

As in the previous examples we import the modules we need, and use aliases for referencing
them in the code.
import ForSyDe.Atom
import ForSyDe.Atom.ExB.Absent (AbstExt)
import ForSyDe.Atom.ExB as ExB
import ForSyDe.Atom.MoC.SY as SY
import ForSyDe.Atom.Skeleton.Vector as V

Although Haskell’s type engine can infer these type signatures, for the sake of documenting
the interfaces for each stage, we will explicitly write their types. First, stage1 is defined as a farm
network of moore processes, where the initial states are provided by a vector. Its definition makes
use of partial application (i.e. arguments which are not explicitly written are supposed to be the
same on the LHS as on the RHS). It is defined hierarchically, making use of local name bindings
after the where keyword.
stage1SY :: V.Vector (AbstExt Int) −− ^ vector of initial states

→ V.Vector (SY.Signal (AbstExt Int)) −− ^ vector of input signals
→ V.Vector (SY.Signal (AbstExt Int)) −− ^ vector of output signals

https://hackage.haskell.org/package/base-4.10.0.0/docs/Text-Read.html
https://forsyde.github.io/forsyde-atom/
https://forsyde.github.io/forsyde-atom/
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-TimeStamp.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
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stage1SY = V.farm21 pcSY
where

pcSY = SY.moore11 ns od
ns = ExB.res21 (+)
od = ExB.res11 id

Let us print and plot the inputs against the outputs, using the test signals and plotting
functions latexV and plotV defined in section 2.3.1:
λ> isy
<-1,1,-1,1>
λ> vsy
<{1,1,1,1,1,1},{-1,1,-1,1,-1,1},{0,0,1,1,0},{-1,-1,-1,-1,-1}>
λ> stage1SY isy vsy
<{-1,0,1,2,3,4,5},{1,0,1,0,1,0,1},{-1,-1,-1,0,1,1},{1,0,-1,-2,-3,-4}>
λ> let latexIn = latexV 6 ["sy1","sy2","sy3","sy4"] vsy
λ> let latexS1 = latexV 7 ["sy1-1","sy2-1","sy3-1","sy4-1"] $ stage1SY isy vsy
λ> let gnuIn = plotV 6 ["sy1","sy2","sy3","sy4"] vsy
λ> let gnuS1 = plotV 7 ["sy1-1","sy2-1","sy3-1","sy4-1"] $ stage1SY isy vsy
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The second stage of the toy system in fig. 2.6b is defined as a reduce network of comb processes.
As seen in its type signature, it inputs a vector of signals and it reduces it to a single signal.
stage2SY :: V.Vector (SY.Signal (AbstExt Int))

→ SY.Signal (AbstExt Int)
stage2SY = V.reduce rSY

where
rSY = SY.comb21 (ExB.res21 (+))

Again, let us print and plot the output signals using the test inputs and utilities defined in
section 2.3.1.
λ> let s2out = (stage2SY . stage1SY isy) vsy
λ> s2out
{0,-1,0,0,2,1}
λ> let latexS2 = latex 7 ["sy1-2","sy2-2","sy3-2","sy4-2"] s2out
λ> let gnuS2 = plot 7 ["sy1-2","sy2-2","sy3-2","sy4-2"] s2out

Finally, the last stage of the toy system applies a filter pattern on the reduced signal to
mark all values less than 0 as absent.
stage3SY :: SY.Signal (AbstExt Int)

→ SY.Signal (AbstExt Int)

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SY.html
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stage3SY = SY.filter (>=0)
>
toySY :: V.Vector (AbstExt Int) −− ^ initial states

→ V.Vector (SY.Signal (AbstExt Int)) −− ^ input
→ SY.Signal (AbstExt Int) −− ^ output

toySY i = stage3SY . stage2SY . stage1SY i

We print and plot the system response to the test signals defined in section 2.3.1.
λ> toySY isy vsy
{0,⊥,0,0,2,1}
λ> let latexS3 = latex 6 ["sy1-3"] $ toySY isy vsy
λ> let gnuS3 = plot 6 ["sy1-3"] $ toySY isy vsy

0 ⊥ 0 0 2 1

(a) latexS3

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5

sample

sy1-3

(b) gnuS3

2.3.3 DE instance
The DE instance of the toy looks exactly the same as the SY instance in section 2.3.2, but is
created using constructors from the ForSyDe.Atom.MoC.DE module. This is why we will skip most
of the description, and jump straight to testing it. The following file, as you are used to by now,
is re-exported by AtomExamples.GettingStarted.
module AtomExamples.GettingStarted.DE where

As previously, we use aliases for the imported modules.
import ForSyDe.Atom
import ForSyDe.Atom.ExB.Absent (AbstExt)
import ForSyDe.Atom.ExB as ExB
import ForSyDe.Atom.MoC.DE as DE
import ForSyDe.Atom.Skeleton.Vector as V

Again, we make the type signatures explicit for documentation purpose. For stage1 we use
the same farm network but now using DE moore processes.
stage1DE :: V.Vector (TimeStamp, AbstExt Int) −− ^ vector of initial states

→ V.Vector (DE.Signal (AbstExt Int)) −− ^ vector of input signals
→ V.Vector (DE.Signal (AbstExt Int)) −− ^ vector of output signals

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-DE.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-DE.html
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stage1DE = V.farm21 pcDE
where

pcDE = DE.moore11 ns od
ns = ExB.res21 (+)
od = ExB.res11 id

When printing ide and vde we can see the effects of rounding the input floating point numbers
to the nearest discrete timestamp. We also have to take into account that the DE version of the
Moore machine produces infinite signals when we print them out. Notice that the generated graphs
may need to be tweaked in order to show the information properly.

λ> ide
<(1s,-1),(1.399999999999s,1),(1s,-1),(1.399999999999s,1)>
λ> vde
<{ 1 @0s},{ -1 @0s, 1 @0.699999999999s, -1 @1.399999999999s, 1 @2.1s, -1 @2.799999999999s, 1 @3.5s

},{ 0 @0s, 1 @1.399999999999s, 0 @2.799999999999s},{ -1 @0s}>
λ> fmap (takeS 6) $ stage1DE ide vde
<{ -1 @0s, 0 @1s, 1 @2s, 2 @3s, 3 @4s, 4 @5s},{ 1 @0s, 0 @1.399999999999s, 2 @2.099999999998s, -1

@2.799999999998s, 1 @3.499999999997s, 3 @3.499999999999s},{ -1 @0s, -1 @1s, -1 @2s, 0 @2
.399999999999s, 0 @3s, 1 @3.399999999999s},{ 1 @0s, 0 @1.399999999999s, -1 @2.799999999998s, -2
@4.199999999997s, -3 @5.599999999996s, -4 @6.999999999995s}>

λ> let latexIn = latexV 3.3 ["de1","de2","de3","de4"] vde
λ> let latexS1 = latexV 3.3 ["de1-1","de2-1","de3-1","de4-1"] $ stage1DE ide vde
λ> let gnuIn = plotV 3.3 ["de1","de2","de3","de4"] vde
λ> let gnuS1 = plotV 3.3 ["de1-1","de2-1","de3-1","de4-1"] $ stage1DE ide vde
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The second stage according to fig. 2.6b is also defined as a reduce network but this time we
use the DE process constructor for the comb processes.

stage2DE :: V.Vector (DE.Signal (AbstExt Int))
→ DE.Signal (AbstExt Int)

stage2DE = V.reduce rDE
where

rDE = DE.comb21 (ExB.res21 (+))

λ> let s2out = (stage2DE . stage1DE ide) vde
λ> takeS 10 s2out
{ 0 @0s, 1 @1s, -1 @1.399999999999s, 0 @2s, 2 @2.099999999998s, 3 @2.399999999999s, -1 @2

.799999999998s, 0 @3s, 1 @3.399999999999s, 3 @3.499999999997s}
λ> let latexS2 = latex 3.3 ["de1-2","de2-2","de3-2","de4-2"] s2out
λ> let gnuS2 = plot 3.3 ["de1-2","de2-2","de3-2","de4-2"] s2out

For the last stage of the toy system there is no DE process constructor in ForSyDe.Atom.MoC.DE
so we need to create it ourselves.

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-DE.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-DE.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-DE.html
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stage3DE :: DE.Signal (AbstExt Int)
→ DE.Signal (AbstExt Int)

stage3DE = deFilter (>=0)
where

deFilter p s = DE.comb21 ExB.filter (predSig p s) s
predSig p s = DE.comb11 (ExB.res11 p) s

toyDE :: V.Vector (TimeStamp, AbstExt Int) −− ^ initial states
→ V.Vector (DE.Signal (AbstExt Int)) −− ^ input
→ DE.Signal (AbstExt Int) −− ^ output

toyDE i = stage3DE . stage2DE . stage1DE i

λ> takeS 10 $ toyDE ide vde
{ 0 @0s, 1 @1s, ⊥ @1.399999999999s, 0 @2s, 2 @2.099999999998s, 3 @2.399999999999s, ⊥ @2

.799999999998s, 0 @3s, 1 @3.399999999999s, 3 @3.499999999997s}
λ> let latexS3 = latex 3.3 ["de1-3"] $ toyDE ide vde
λ> let gnuS3 = plot 3.3 ["de1-3"] $ toyDE ide vde
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2.3.4 CT instance

The CT instance of the toy looks exactly the same as the previous ones in section 2.3.2 and ??,
but is created using constructors from the ForSyCt.Atom.MoC.CT module. The following file, as
you are used to by now, is re-exported by AtomExamples.GettingStarted.

module AtomExamples.GettingStarted.CT where

As prevoiusly, we use aliases for the imported modules.

import ForSyDe.Atom
import ForSyDe.Atom.ExB.Absent (AbstExt)
import ForSyDe.Atom.ExB as ExB
import ForSyDe.Atom.MoC.CT as CT
import ForSyDe.Atom.Skeleton.Vector as V

Again, stage1 is a farm network of CT moore processes.

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-CT.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-CT.html
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stage1CT :: V.Vector (TimeStamp, Time → AbstExt Time) −− ^ vector of initial states
→ V.Vector (CT.Signal (AbstExt Time)) −− ^ vector of input signals
→ V.Vector (CT.Signal (AbstExt Time)) −− ^ vector of output signals

stage1CT = V.farm21 pcCT
where

pcCT = CT.moore11 ns od
ns = ExB.res21 (+)
od = ExB.res11 id

We cannot print ict nor vct any more, but we can plot them. Again, the generated plots
might need to be tweaked.
λ> let latexIn = latexV 3.5 ["ct1","ct2","ct3","ct4"] vct
λ> let latexS1 = latexV 3.5 ["ct1-1","ct2-1","ct3-1","ct4-1"] $ stage1CT ict vct
λ> let gnuIn = plotV 3.5 ["ct1","ct2","ct3","ct4"] vct
λ> let gnuS1 = plotV 3.5 ["ct1-1","ct2-1","ct3-1","ct4-1"] $ stage1CT ict vct
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The second stage is a reduce network of CT comb processes.
stage2CT :: V.Vector (CT.Signal (AbstExt Time))

→ CT.Signal (AbstExt Time)
stage2CT = V.reduce rCT

where
rCT = CT.comb21 (ExB.res21 (+))

λ> let s2out = (stage2CT . stage1CT ict) vct
λ> let latexS2 = latex 3.3 ["ct1-2","ct2-2","ct3-2","ct4-2"] s2out
λ> let gnuS2 = plot 3.3 ["ct1-2","ct2-2","ct3-2","ct4-2"] s2out

For the last stage of the toy system there is no CT process constructor in ForSyDe.Atom.MoC.CT
so we need to create it ourselves.

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-CT.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-CT.html
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stage3CT :: CT.Signal (AbstExt Time)
→ CT.Signal (AbstExt Time)

stage3CT = ctFilter (>=0)
where

ctFilter p s = CT.comb21 ExB.filter (predSig p s) s
predSig p s = CT.comb11 (ExB.res11 p) s

toyCT :: V.Vector (TimeStamp, Time → AbstExt Time) −− ^ initial states
→ V.Vector (CT.Signal (AbstExt Time)) −− ^ input
→ CT.Signal (AbstExt Time) −− ^ output

toyCT i = stage3CT . stage2CT . stage1CT i

λ> let latexS3 = latex 3.3 ["ct1-3"] $ toyCT ict vct
λ> let gnuS3 = plot 3.3 ["ct1-3"] $ toyCT ict vct
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2.3.5 SDF instance
The SDF instance of the toy system is created using process constructor helpers defined in
ForSdfDe.Atom.MoC.SDF, and can be found in the following module (re-exported by AtomExamples.GettingStarted).
module AtomExamples.GettingStarted.SDF where

import ForSyDe.Atom
import ForSyDe.Atom.ExB.Absent (AbstExt)
import ForSyDe.Atom.ExB as ExB
import ForSyDe.Atom.MoC.SDF as SDF
import ForSyDe.Atom.Skeleton.Vector as V

stage1 is defined as a farm network of SDF moore processes. As SDF Moore processes are in
principle graph loops, we take the initial tokens for each loop from a vector of lists of tokens. Also,
both next state and output decoder functions are defined over lists of values instead of values, and
they need to be provided within a context which describes the production and consumption rates.
Read more about the particularities of SDF in the API documentation.
stage1SDF :: V.Vector ([AbstExt Int]) −− ^ vector of initial tokens

→ V.Vector (SDF.Signal (AbstExt Int)) −− ^ vector of input signals

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SDF.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SDF.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SDF.html
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→ V.Vector (SDF.Signal (AbstExt Int)) −− ^ vector of output signals
stage1SDF = V.farm21 pcSDF

where
pcSDF = SDF.moore11 ((1,2),1,ns) (1,1,od)
ns [x1] [y1,y2] = [ExB.res31 (λa b c → a + b + c) x1 y1 y2]
od [x1] = [ExB.res11 id x1]

Let us print and plot the inputs against the outputs, using the test signals and plotting
functions latexV and plotV defined in section 2.3.1:
λ> isdf
<[-1],[1],[-1],[1]>
λ> vsdf
<{1,1,1,1,1,1},{-1,1,-1,1,-1,1},{0,0,1,1,0},{-1,-1,-1,-1,-1}>
λ> stage1SDF isdf vsdf
<{-1,1,3,5},{1,1,1,1},{-1,-1,1},{1,-1,-3}>
λ> let latexIn = latexV 6 ["sdf1","sdf2","sdf3","sdf4"] vsdf
λ> let latexS1 = latexV 7 ["sdf1-1","sdf2-1","sdf3-1","sdf4-1"] $ stage1SDF isdf vsdf
λ> let gnuIn = plotV 6 ["sdf1","sdf2","sdf3","sdf4"] vsdf
λ> let gnuS1 = plotV 7 ["sdf1-1","sdf2-1","sdf3-1","sdf4-1"] $ stage1SDF isdf vsdf
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stage2 is again a reduce network of comb processes. As with stage1, we need to provide the
production and consumption rates.
stage2SDF :: V.Vector (SDF.Signal (AbstExt Int))

→ SDF.Signal (AbstExt Int)
stage2SDF = V.reduce rSDF

where
rSDF = SDF.comb21 ((1,1),1,rF)
rF [x1] [y1] = [ExB.res21 (+) x1 y1]

Again, let us print and plot the output signals using the test inputs and utilities defined in
section 2.3.1.
λ> let s2out = (stage2SDF . stage1SDF isdf) vsdf
λ> s2out
{0,0,2}
λ> let latexS2 = latex 3 ["sdf1-2"] s2out
λ> let gnuS2 = plot 3 ["sdf1-2"] s2out

As for DE and CT instances, a SDF filter process does not really make sense in practice,
but for the scope of this toy system, we need to instantiate one ourselves.
stage3SDF :: SDF.Signal (AbstExt Int)

→ SDF.Signal (AbstExt Int)
stage3SDF = sdfFilter (>=0)

where

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-SDF.html
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sdfFilter p s = SDF.comb21 ((2,2),2,filterF) (predSig p s) s
filterF pl sl = zipWith ExB.filter pl sl
predSig p s = SDF.comb11 (1,1,fmap (ExB.res11 p)) s

>
toySDF :: V.Vector ([AbstExt Int]) −− ^ initial tokens

→ V.Vector (SDF.Signal (AbstExt Int)) −− ^ input
→ SDF.Signal (AbstExt Int) −− ^ output

toySDF i = stage3SDF . stage2SDF . stage1SDF i

λ> toySDF isdf vsdf
{0,0}
λ> let latexS3 = latex 3 ["sdf1-3"] $ toySDF isdf vsdf
λ> let gnuS3 = plot 3 ["sdf1-3"] $ toySDF isdf vsdf
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2.3.6 Polymorphic instance
In the previous section you’ve seen how to model systems in ForSyDe-Atom using the helper
functions for instantiating process constructors in different MoCs. In this section we will be
instantiating the "raw" polymorphic form of the same process constructors, not overloaded with
any execution semantics. The execution semantics are deduced from the tag system of the input
signals, i.e. their types. These process constructors are defined as patterns of MoC atoms in the
ForSdfDe.Atom.MoC module. The code below is exported by AtomExamples.GettingStarted.
module AtomExamples.GettingStarted.Polymorphic where

Notice that apart from the polymorphic MoC patterns, we are also using "raw" extended
behavior and skeleton patterns.
import ForSyDe.Atom
import ForSyDe.Atom.MoC.SDF (Prod, Cons)
import ForSyDe.Atom.ExB as ExB
import ForSyDe.Atom.MoC as MoC
import ForSyDe.Atom.Skeleton as Skel

stage1 is defined, like in all previous instances, as a farm network of moore processes.
stage1 :: (Skeleton s, MoC m, ExB b)

=> Fun m (b a) (Fun m (b a) (Ret m (b a))) −− ^ next state function
→ Fun m (b a) (Ret m (b a)) −− ^ output decoder function
→ s (Stream (m (b a))) −− ^ signals with initial tokens
→ s (Stream (m (b a))) −− ^ vector of input signals
→ s (Stream (m (b a))) −− ^ vector of output signals

stage1 ns od = Skel.farm21 (MoC.moore11 ns od)

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
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We can immediately observe some main differences in the type signature. First, the Vector,
Signal and AbstExt data types are not explicit any more, but suggested as type constraints. The
first line in the type signature (Skel s, MoC m, ExB b) suggests that the type of s should belong
to the skeleton layer, the type of m should belong to the MoC layer and the type of b should belong
to the extended behavior layer. Another peculiarity is the presence of the first two structures, but
there should be nothing frightening about them: e.g. a structure Fun m a (Fun m b (Ret m c))
simply stands for the type of a function a -> b -> c, which was wrapped in a context specific
to a MoC m. Read the MoC layer’s API documentation for more on function contexts. This
means that the functions for the next state decoder and the output decoder need to be provided
as arguments for stage1, and they might differ depending on the MoCs. A third peculiarity is
that the initial states are provided as signals and not through some specific structure any more.
Indeed, the MoC atoms extract initial states from signals, and deal with them in different ways
depending on the MoC they implement.

The main two classes of MoCs, based on their notion of tags, but also based on how they
deal with events, are timed MoCs (e.g. SY, DE, CT) and untimed MoCs (e.g. SDF). Concerning
the functions they lift from layers below, we can say that in ForSyDe-Atom timed MoCs lift
functions on individual values, whereas untimed MoCs lift functions on lists of values (i.e. multiple
tokens). Based on this observation, let us define the next state and output decoders for timed and
untimed/SDF MoCs.
nsT :: (ExB b, Num a) => b a → b a → b a
odT :: (ExB b, Num a) => b a → b a
nsT = ExB.res21 (+)
odT = ExB.res11 id

nsSDF :: (ExB b, Num a) => (Cons, [b a] → (Cons, [b a] → (Prod, [b a])))
odSDF :: (ExB b, Num a) => (Cons, [b a] → (Prod, [b a]))
nsSDF = MoC.ctxt21 (1,2) 1 (λ[x1] [y1,y2] → [ExB.res31 (λa b c → a + b + c) x1 y1 y2])
odSDF = MoC.ctxt11 1 1 (λ[x1] → [ExB.res11 id x1])

OBS: for the sake of simplicity, the ExB component has been left as part of the nsT and odT,
respectively nsSDF and odSDF, and not part of stage1. Describing all layers within the stage1
function would have rendered the type signature a bit more complicated and is left as an exercise
for the reader.

We postpone plotting the input and output signals for later. Carrying on with instatiating
stage2 as a reduce network of comb processes:
stage2 :: (Skeleton s, MoC m, ExB b)

=> Fun m (b a) (Fun m (b a) (Ret m (b a))) −− ^ reduce function
→ s (Stream (m (b a))) −− ^ vector of input signals
→ Stream (m (b a)) −− ^ output signal

stage2 r = Skel.reduce (MoC.comb21 r)

Again, the passed functions need to be specifically defined for each MoC, and for simplicity we
include the ExB part as well:
rT :: (ExB b, Num a) => b a → b a → b a
rT = ExB.res21 (+)

rSDF :: (ExB b, Num a) => (Cons, [b a] → (Cons, [b a] → (Prod, [b a])))
rSDF = MoC.ctxt21 (1,1) 1 (λ[x1] [y1] → [ExB.res21 (+) x1 y1])

Finally stage3, the filter pattern, we create it ourselves in terms of existing ones. This
time we incorporate the extended behaviors in the definition of stage3, an we only ask for a
context wrapper as input argument. Don’t be alarmed by the scary type signature, the actual
implementation is quite elegant.
stage3 :: (MoC m, ExB b, Ord a, Num a)

=> ((b a → b a)
→ Fun m (b a) (Ret m (b a))) −− ^ context wrapper for the filter behavior

→ Stream (m (b a)) −− ^ input signal
→ Stream (m (b a)) −− ^ output signal

stage3 fctx = MoC.comb11 (fctx filtF)
where filtF a = ExB.filter (ExB.res11 (>=0) a) a

And now for the timed/untimed context wrappers:

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-Skeleton.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
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fctxT = id
fctxSDF f = MoC.ctxt11 2 2 (fmap f)

The full definition of the toy system:
toy ns od r fctx is = stage3 fctx . stage2 r . stage1 ns od is

And that’s it! Let us plot now the test signals and the responses of the system for each stage.
This time we will use only LATEX plots. We can also plot initial states as they are wrapped as
signals. The test results can be seen in fig. 2.7.
λ> let noLabel = ["","","",""]
λ> let iSDF = latexV 2 noLabel sisdf
λ> let iSY = latexV 2 noLabel sisy
λ> let iDE = latexV 2 noLabel side
λ> let iCT = latexV 2 noLabel sict
λ>
λ> let vSDF = latexV 6 noLabel vsdf
λ> let vSY = latexV 6 noLabel vsy
λ> let vDE = latexV 3.3 noLabel vde
λ> let vCT = latexV 3.3 noLabel vct
λ>
λ> let s1SDF = latexV 6 noLabel $ stage1 nsSDF odSDF sisdf vsdf
λ> let s1SY = latexV 6 noLabel $ stage1 nsT odT sisy vsy
λ> let s1DE = latexV 3.3 noLabel $ stage1 nsT odT side vde
λ> let s1CT = latexV 3.3 noLabel $ stage1 nsT odT sict vct
λ>
λ> let s2 ns od r is = stage2 r . stage1 ns od is
λ> let s2SDF = latex 6 noLabel $ s2 nsSDF odSDF rSDF sisdf vsdf
λ> let s2SY = latex 6 noLabel $ s2 nsT odT rT sisy vsy
λ> let s2DE = latex 3.3 noLabel $ s2 nsT odT rT side vde
λ> let s2CT = latex 3.3 noLabel $ s2 nsT odT rT sict vct
λ>
λ> let s3SDF = latex 6 noLabel $ toy nsSDF odSDF rSDF fctxSDF sisdf vsdf
λ> let s3SY = latex 6 noLabel $ toy nsT odT rT fctxT sisy vsy
λ> let s3DE = latex 3.3 noLabel $ toy nsT odT rT fctxT side vde
λ> let s3CT = latex 3.3 noLabel $ toy nsT odT rT fctxT sict vct

As expected, the results in fig. 2.7 are exactly the same as the ones presented in section 2.3.2
and ??????. In conclusion we have succesfully instantiated a MoC-agnostic system, whose execu-
tion semantics are inferred according to the input data types. This is possible thanks to the notion
of type classes, inferred from the host language Haskell. In this section, instead of MoC-specific
helpers, we have used the "raw" process constructors as defined in the ForSdfDe.Atom.MoCmodule
as patterns of MoC-layer atoms.

This example, used as a case study by Ungureanu and Sander, 2017, has been focused on the
MoC layer. A similar approach based on atom polymorphism could target other layers as well
since, as you have seen, all layers are implemented as type classes. At the moment of writing this
report the extended behavior layer was represented only by the AbstExt type, while the skeleton
layer had only Vector. Nevertheless, future iterations of ForSyDe-Atom will describe more
types.

2.4 Making your own patterns

The final section of this report introduces the reader to constructing custom patterns in ForSyDe-
Atom. Up until now we have been using patterns which were pre-defined as compositions of atoms.
Atoms are primitive, indivizible building blocks capturing the most basic semantics in each layer.
{−# LANGUAGE PostfixOperators #−}

The code for this section is found in the following module, which is not re-exported, i.e. needs
to be manually imported.
module AtomExamples.GettingStarted.CustomPattern where

For this exercise, we will create a custom comb pattern with 5 inputs and 3 outputs, as a
process constructor in the MoC layer. We will test this pattern with a set of SY and a set of DE
input signals, thus we need to import the following modules:

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
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import ForSyDe.Atom
import ForSyDe.Atom.MoC
import ForSyDe.Atom.MoC.SY as SY
import ForSyDe.Atom.MoC.DE as DE

The best way to start building your own patterns is to study the source code for the existing
patterns and see how they are made. If you don’t want to dig into the source code of ForSyDe-
Atom, there is a link in the API documentation for each exported element, as suggested in fig. 2.8.

Figure 2.8: Screenshot from the API documentation. The link to the source code is marked with
a red rectangle

Studying the comb22 pattern, you can see that it is defined in terms of the lift and sync
atoms which are represented by the infix operators -.- and -*- respectively, and the unzip utility
represented by the postfix operator -*<. lift and sync are atoms becuse they capture an interface
for exeucution semantics, whereas unzip is just a utility because it is merely a type traversal which
alters the structure of data types and rebuilds it to describe "signals of events carrying values".

Considering the applicative nature of the -.- and -*- atoms, the comb pattern with 5 inputs
and 3 outputs can be written as the mathematical formula below. This one-liner tells that function
f is "lifted" into the MoC domain, and applied to the five input signals which are synchronized.
The -*« postfix operator then "unzips" the resulting signal of triples into three synchronized
signals of values. The applicative mechanism explained in the previous paragraph is depicted in
fig. 2.9.

comb53 f s1 s2 s3 s4 s5
= (f −.− s1 −∗− s2 −∗− s3 −∗− s4 −∗− s5 −∗<<)

!

"

" /

S(α1)

S(α2)

S(αm)

S(α2 → . . .→ αm → βn)

S(. . .→ αm → βn)

S(αm → βn)

S(βn)

S(β1)

S(β2)

S(βn)

...
...

· · ·

f

Figure 2.9: Composition of atoms forming the comb pattern

If we want to restrict the pattern to one specific MoC, then we must mention this in the type
signature we associate it with, like in the example below.

comb53SY :: (a1 → a2 → a3 → a4 → a5 → (b1,b2,b3))
→ SY.Signal a1 −− ^ input signal
→ SY.Signal a2 −− ^ input signal
→ SY.Signal a3 −− ^ input signal
→ SY.Signal a4 −− ^ input signal
→ SY.Signal a5 −− ^ input signal
→ ( SY.Signal b1

, SY.Signal b2
, SY.Signal b3) −− ^ 3 output signals

comb53SY f s1 s2 s3 s4 s5
= (f −.− s1 −∗− s2 −∗− s3 −∗− s4 −∗− s5 −∗<<)

To test the output, let us create five signals and a function that needs to be lifted. For the
example, the terminal printouts should suffice to test our simple pattern.

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
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λ> import AtomExamples.GettingStarted.CustomPattern as CP
λ> let fun a b c d e = (a+c+e, d-b, a*e)
λ> let sy1 = SY.signal [1,2,3,4,5]
λ> let sy2 = SY.comb11 (+10) sy1
λ> let sy3 = SY.constant1 100
λ> let de1 = DE.signal [(0,1),(3,2),(7,3),(9,4),(11,5)]
λ> let de2 = DE.signal [(0,11),(3,12),(5,13),(9,14),(11,15)]
λ> let de4 = DE.constant1 100
λ>
λ> let (o1,o2,o3) = CP.comb53 fun sy1 sy1 sy2 sy2 sy3
λ> o1
λ> {112,114,116,118,120}
λ> o2
λ> {10,10,10,10,10}
λ> o3
λ> {100,200,300,400,500}
λ>
λ> let (o1,o2,o3) = CP.comb53 fun de1 de1 de2 de2 de4
λ> o1
λ> { 112 @0s, 114 @3s, 115 @5s, 116 @7s, 118 @9s, 120 @11s}
λ> o2
λ> { 10 @0s, 10 @3s, 11 @5s, 10 @7s, 10 @9s, 10 @11s}
λ> o3
λ> { 100 @0s, 200 @3s, 200 @5s, 300 @7s, 400 @9s, 500 @11s}
λ>
λ> let (o1,o2,o3) = CP.comb53SY fun sy1 sy1 sy2 sy2 sy3
λ> o1
λ> {112,114,116,118,120}
λ> o2
λ> {10,10,10,10,10}
λ> o3
λ> {100,200,300,400,500}
λ>
λ> let (o1,o2,o3) = CP.comb53SY fun de1 de1 de2 de2 de4
<interactive>:71:56-58:

Couldn’t match type ’DE Integer’ with ’SY b3’
Expected type: SY.Signal b3

Actual type: DE.Signal Integer
Relevant bindings include

it :: (SY.Signal b3, SY.Signal b2, SY.Signal b3)
(bound at <interactive>:71:1)

In the second argument of ’c0omb53SY’, namely ’de1’
In the expression: comb53SY fun de1 de1 de2 de2 de4

...

2.5 Conclusion

This report has introduced the reader to the basic features of ForSyDe-Atom a framework for
modeling and testing of cyber-physical systems. It has covered basic usage such as instantiating
systems and plotting signals. It briefly went through concepts such as layers, atoms and patterns,
and has focused on their practical usage. A step-by-step tutorial has been presented, showing
alternative ways to instantiate systems and demonstrating the polymorphism of layers.

The reader is recommended to further consult the API documentation which also acts as a
manual for the library, as well as the related publications listed on the project web site. Future
reports will assume familiarity with using and understanding the framework and will focus mainly
on results.
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CHAPTER 3
Hybrid CT/DT Models in ForSyDe-Atom

This chapter gathers examples and experiments which involve hybrid models fo-
cusing on the the semantics and implications of combining and translating between
continuous and discrete domains. As such, the focus is mainly on exploring alternative
models and analyzing the implications on fidelity, precision and performance. This
chapter is also meant to support the associated scientific publications with experimen-
tal results.

Contents
3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Info
Compatibility : ForSyDe-Atom version 0.2.2

Repository : https://github.com/forsyde/forsyde-atom-examples
Path : <repo_root>/hybrid

Other deps. : none

3.1 Goals

The reader is assumed to have been familiarized with the ForSyDe-Atom modeling framework.
A good resource for that is chapter 2. The main goals of this chapter are:

• explore alternative ForSyDe-Atom models for widely known hybrid (discrete and contin-
uous time) systems, with the scope of analyzing the implications from the modeling and
simulation perspective.

• train the reader into the decision-making process of modeling hybrid systems, and the trade-
offs involved. While as per writing this report the ForSyDe-Atom modeling framework is
still limited, future directions are hinted.

• support the associated scientific publications with the complete experiments and results for
the models used as case studies. These publications include: ungureanu18a

3.2 RC Oscillator

In this section we model the RC oscillator setup in fig. 3.1. Despite its apparent simplicity, shows
an interesting problem in CPS: how continuous systems react to discrete stimuli. This example was
used in Ungureanu, Medeiros, and Sander, 2018, and for a study on the theoretical implications
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https://github.com/forsyde/forsyde-atom/releases/tag/0.2.2
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of the chosen models, we strongly recommend reading this paper before going further. The source
code for this section is found in the following module:

module AtomExamples.Hybrid.RCOsc where

+
−VDD

sw1 R

C

sw2

R

VO

Figure 3.1: RC oscillator setup

These are the dependencies that need to be included within this module:

import ForSyDe.Atom −− general utilities
import ForSyDe.Atom.MoC.CT as CT −− CT MoC library
import ForSyDe.Atom.MoC.DE as DE −− DE MoC library
import ForSyDe.Atom.MoC.SY as SY −− SY MoC library
import ForSyDe.Atom.MoC.Time as T −− utilities for functions of time
import ForSyDe.Atom.MoC.TimeStamp (milisec) −− utilities for time stamps
import ForSyDe.Atom.Utility.Plot −− plotting utilities

The circuit in fig. 3.1 is characterized by two states: 1) sw1 is closed and sw2 open, equivalent
to the situation where the capacitor C charges with VDD; 2) sw1 is open and sw2 is closed,
equivalent to the situation where the capacitor C discharges to the ground through R. For the
scope of this example, to keep the model simple and deterministic, we assume that sw1 and sw2

open/close alternatively at the same discrete time instants, there are no intermediary transitions,
and we ignore the effects of discharge through switches.

Let us analyze case 1) above. The circuit in fig. 3.1 becomes a RC integrator, where the input
signal is applied to the resistance with the output taken across the capacitor. The amount of
charge that is established across the plates of the capacitor is equal to the time domain integral
of the current, like in eq. (3.1). The rate at which the capacitor charges is directly proportional
to the amount of the resistance and capacitance giving the time constant of the circuit like in
eq. (3.2). As the capacitors current can be expressed as the rate of change of charge, Q with
respect to time, we can express the charge at any instant of time like in eq. (3.3). Eq. (3.3) brings
together the previous equations and uses the instant voltage charge formula to obtain the final
integral formula for VO.

iC(t) = C
∂VC(t)

∂t
=
VDD
R

(3.1)

RC = R
Q

V
= R

i× T
i×R = T (3.2)

i =
∂Q

∂t
⇒ Q =

∫
i ∂t (3.3)

VO = VC =
Q

C

(3)
=

1

C

∫
i ∂t

(1)
=

1

C

∫
VDD
R

∂t =
1

RC

∫
VDD∂t (3.4)

If an ideal step voltage pulse is applied, that is with the leading edge and trailing edge consid-
ered as being instantaneous, the voltage across the capacitor will increase for charging exponen-
tially over time at a rate determined by eq. (3.5). Similarly, in case 2) the circuit becomes an RC
bridge where, assuming that C has been fully charged, it now discharges to the ground at a rate
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determined by eq. (3.6).

VO,charge(t) = VC(t) = VDD

(
1− e− t

RC

)
(3.5)

VO,discharge(t) = VC(t) = VDD

(
e−

t
RC

)
(3.6)

Translating eqs. (3.5) and (3.6) into ForSyDe-Atom Haskell code, we get the following,
assuming t0 is the moment where the switch occurred, and ignoring the factor of VDD (which is
considered and scaled in the output decoder anyway).
−− | RC time constant.
rc = 0.1

−− | V_O(t0,t) during the discharging. t0 is the instant when the switch occurred.
vcDischarge t0 = λt → T.exp (−(t−t0) / rc)

−− | V_O(t0,t) during the charging. t0 is the instant when the switch occurred.
vcCharge t0 = λt → 1 − T.exp (−(t−t0) / rc)

Naturally, in ForSyDe-Atom we can model the oscillator in multiple ways, depending on what
aspect we want to focus. Our first example models the RC oscillator as a Mealy finite state machine
which embeds the continuous and discrete time semantics as defined in the ForSyCt.Atom.MoC.CT
library, like in fig. 3.2. As such, we imply from the model that the switching of sw1 and sw2 is
performed periodically after e certain τ , inferred from the initial state of the CT.mealy process.
As such, the state machine is loaded with the voltage charging rule in eq. (3.5), and a duration τ .
The configuration of the mealy pattern ensures that at each multiple of τ the next state function
ns will be performed, negating the state rule (i.e. the rate for VO), basically translatig back and
forth between eqs. (3.5) and (3.6). As mentioned before, the output decoder od merely rescales
VO with VDD.

 %  
st

VDD
CT.mealy

ns
500ms,VO,charge ×

Figure 3.2: Internal pattern of the initial RC oscillator setup

−− | RC oscillator model as CT FSM with discrete semantics inherent in the CT model.
osc1 :: CT.Signal Rational −− ^ VDD as input signal

→ CT.Signal Rational −− ^ V_O as output signal
osc1 = CT.mealy11 ns od (milisec 500, vcCharge 0)

where
ns v _ = 1 + (−1 ∗ v)
od = (∗)

Plotting the output against an "arbitrary" VDD, we get fig. 3.3.
−− | plotting configuration that will be used throughout this section
cfg = defaultCfg {xmax=3, rate=0.01}

−− | example input for testing ’osc1’
vdd1 = CT.signal [(0,λ_→2),(1,λ_→1.5),(2,λ_→1)] :: CT.Signal Rational

−− | plotting the response of ’osc1’
plot1 = plotGnu $ prepareL cfg {labels=["V_{DD}","V_O"]} $ [vdd1, osc1 vdd1]

The model for osc1, although strikes out as simple and elegant, is by all means limited. In
the following paragraphs we will address these limitations one at a time, and try find solutions
that overcome them in order to include more realistic or at least a family of behaviors correctly
covering classes of (increasing) non-determinism.

Lee, 2016 argues that determinism is an attribute of the model, and it is dependent on what
we consider as inputs and outputs. As such, the model osc1 in fig. 3.2 is a deterministic model for
the circuit in fig. 3.1 and the output in fig. 3.3 is the correct response in the following conditions:

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-CT.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC-CT.html
https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
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Figure 3.3: Response of osc1

• the changes in VDD happen at multiples of τ . If a changes occur at any other time the
response will be shown, but it will not describe the RC circuit in a realistic manner, as we
will see shortly.

• the time constant follows roughly the rule 5RC ≤ τ where the chosen τ is a part of the
initial state of the Mealy state machine. This says that the discharging occurrs when the
capacitor is charged at least 99.3% and vice-versa, according to eqs. (3.5) and (3.6).

• τ > 0. τ = 0 would render the system as non-causal and would manifest Zeno behavior. In
practical terms, this is the equivalent of the simulation being stuck and not advancing time.

Another property (or limitation, depending on what your intentions are) is that the switching
of sw1 and sw2 cannot be controlled and is a property of the Mealy machine. This switching is
inferred by τ which sets the (discrete) period of these events. Let us change that by giving the
possibility to control the state of the capacitor as charging/discharging through a signal of discrete
events. A system such as the one we propose implies some subtle changes in the modelling which
require a deeper understanding on the underlying MoCs. First of all, we still require a stateful
process (a state machine) which captures the notion of working modes, but which reacts to a
state change instantaneously. But this implies that τ = 0 which, as said above, would lead to
Zeno behavior. On the other hand, the particular behavior required is described precisely by
synchronous reactive MoC, where the response of a system is performed in "zero time".

Continuing to adhere to the school of thought of Lee, 2016, where the merit of the modeler
lies in choosing the right modeling paradigm for the right problem1, we choose to model the
above described system as a synchronous reactive (SY) state machine wrapped inside a DE/CT
environment like in fig. 3.4. As such, we should note a few particularities of this model:

• in CT the carried values are implicit functions of time, i.e. they carry time semantics. In DE
and SY, the time semantics make no sense, thus the same functions of time are explicit (where
Time itself is just a data type ∈ V ). Therefore when converting SCT (α) 7→ SDE(t→ α) and
vice-versa SDE(t→ α) 7→ SCT (α).

1Lee argues that the cost we pay in the loss of determinism is a property of the chosen modeling framework,
and not of the model itself.
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• in SY tags are useless, therefore DE tags and values are split into two separate SY signals
upon conversion. This way we can easily recreate the DE signal without loss of information.
So upon conversion SDE(α) 7→ SSY (t)×SSY (α) and vice-versa SSY (t)×SSY (α) 7→ SDE(α).
• the discrete control signal Scontrol, carries nothing, and it is used only for the timestamps

generated by its tags, i.e. for generating SSY (t). These timestamps are further used by the
od function to determine the time when the switch occurred t0 in the formulas for VO in
eqs. (3.5) and (3.6).

ns od Charging

SY.mealy

DE

SY

SY

DE

DE

CT

×

CT.comb

embed

Scontrol

VDD

VO

Figure 3.4: RC oscillator model which reacts to a discrete control signal. Shapes decorating signals
suggest the type of carried tokens: circles = scalars; squares = functions

Like in the model from fig. 3.2, the model for osc2 in fig. 3.4 scales the output with VDD
through a combinational CT process. The next state decoder function ns does not manipulate
the rule for VC anymore, but rather switches between the states Charge and Discharge, and the
output decoder od selects the proper VC rule from eq. (3.5) or eq. (3.6) respectively, based on the
current state.
−− | Encodes the capacitor state
data CState = Charging | Discharging

We encode the capcitor state (i.e. the states of sw1 and sw2) through the CState data type.
Thus the code for fig. 3.4 is:
−− | RC oscillator model as FSM which reacts to discrete impulses
osc2 :: CT.Signal Rational −− ^ VDD input signal

→ DE.Signal () −− ^ control signal of discrete impulses
→ CT.Signal Rational −− ^ output signal

osc2 s = CT.comb21 (∗) s . embed (SY.mealy11 ns od Charging)
where
−− SY next state function
ns Charging _ = Discharging
ns Discharging _ = Charging
−− SY output decoder function
od Charging t0 = vcCharge (time t0)
od Discharging t0 = vcDischarge (time t0)
−− wrapper that embeds a SY process into a mixed DE/CT environment
embed p de = let (t, _) = DE.toSY de

in DE.toCT $ SY.toDE t (p t)

Now let us create two situations to test osc2. The control signal sCtrl injects events at
timestamps 0, 0.6, 1.4, 2.3 and 2.8, causing the SY state machine to react each time changing its
state from Charge to Discharge and vice-versa. The first VDD input vdd21 is mirroring an “ideal
case”, when changes occur at time instants where switching happens, meaning that it does not
affect the evolution of the VO rule. On the contrary, vdd22 comes at arbitrary times, thus affecting
the output in a way that is unrealistic, i.e. VO changes values abruptly and instantaneously, which
strays away from the acceptable behavior of a capacitor. This can be seen in fig. 3.5.
−− | Signal of discrete events. Carries nothing, it is used only for the time stamps.
sCtrl = DE.signal [(0,()),(0.6,()),(1.4,()),(2.3,()),(2.8,())] :: DE.Signal ()

−− | example input for testing ’osc2’
vdd21 = CT.signal [(0,λ_→2),(1.4,λ_→1.5),(2.8,λ_→1)] :: CT.Signal Rational
vdd22 = CT.signal [(0,λ_→1),(0.8,λ_→2),(1.6,λ_→1.5)] :: CT.Signal Rational

−− | plotting the example responses of ’osc2’
plot21 = plotGnu $ prepareL cfg {labels=["V_{DD}","V_O"]} $ [vdd21, osc2 vdd21 sCtrl]
plot22 = plotGnu $ prepareL cfg {labels=["V_{DD}","V_O"]} $ [vdd22, osc2 vdd22 sCtrl]
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Figure 3.5: Response of osc2

The second case in fig. 3.5 can be explained easily if we consider the fact that VO itself is the
result of a statically pre-calculated function of time. There is no notion of feedback response to
the continuous inputs, the only feedback is synchronous reactive for osc2 and even osc1. In other
words any change on the input will affect how the output “looks like”, but it will not affect the
continuous behavior which, as said, is pre-calculated. In order to influence the continuous behavior,
some sort of continuous feedback is necessary, which is usually non-causal, thus uncomputable.
Without going too much into detail we can say that in order to model a realistic behavior of the
capacitor response in VO, we need to embed an ordinary differential equation (ODE) solver within
a synchronous reactive state machine2, which models precisely eq. (3.4).

VI

R

C

VO

−
+x

∫
× 1

RC
y

Figure 3.6: RC bridge: circuit (left); block diagram based on eq. (3.4) (right)

∫ t0+h

t0

f(t, y(t))∂t ≈ hf(t0, y(t0)) (3.7)

ẏn =
hRC

h+RC

(
1

RC
yn +

1

h
yn−1

)
(3.8)

First let us model a simple RC bridge like in fig. 3.6 which acts like a low-pass filter, and acts
according to eq. (3.4). As mentioned, we model this circuit as a SY state machine embedded
within a CT environment. Why a state machine? Because the circuit itself, due to the capacitor,
is a memory system, i.e. its output is dependent on its history as well as inputs. The previous
"history" at the start of simulation is encoded inside the initial state. The next state decoder itself
needs to "feed-through" the input and mirror the behavior of the block diagram fig. 3.6. On the
other hand, this block diagram shows a non-causal system, which as such is uncomputable, and
needs to be transformed into a solvable form. As per the writing of this report, ForSyDe-Atom3

did not provide generic ODE solvers, thus for didactic purpose we write the following numerical
solver for our RC circuit in fig. 3.6 using Euler’s trapezoidal method eq. (3.7), by substituting by
hand eq. (3.4) with its feed-forward version in eq. (3.8):
−− | ODE solver for a simple RC low−pass filter using Euler’s method
euler :: TimeStamp −− ^ time step for the solver precision

→ (Time → Rational) −− ^ the input function being integrated

2theoretical implications will be analyzed in the upcoming journal publications
3version 0.2.2
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→ Rational −− ^ the "history" of the integral at t0
→ TimeStamp −− ^ t0
→ Time → Rational −− ^ a function of time

euler step f p t0 t = iterate p t0
where

h = time step
−− by−hand substitution of eq.(4) using the trapezoidal rule
calc vp v = (h ∗ rc)/(h + rc) ∗ (1/rc ∗ v + 1/h ∗ vp)
−− loop which calculates the integral step−wise from t0 to t
iterate st ti

| t < time ti = st
| otherwise = iterate (calc st $ f (time ti)) (ti + step)

As said earlier, we model the RC circuit in fig. 3.6 by including the euler solver into a feed-
through state machine (see the state pattern) like in fig. 3.7. Like for osc2, the timestamps
resulted after splitting the tags from values when interfacing between DE and SY are used for
determining the t0s for each new incoming event. The solver inputs functions of time and outputs
functions of time (i.e. the solver itself is the output).

 

%

DE

SY

SY

DE
CT

DE

DE

CTVI
VO

timestamps embed

SY.state

solver

t 7→ 0

Figure 3.7: ForSyDe-Atom model of the RC bridge in fig. 3.6

rcfilter :: CT.Signal Rational → CT.Signal Rational
rcfilter s

= let (ts, sy) = DE.toSY $ CT.toDE s
out = SY.state21 ns (λ_→0) ts sy
ns p t s = euler 0.01 s (p (time t)) t

in DE.toCT $ SY.toDE ts out

Testing the filter against a square wave signal, we get the response plotted in fig. 3.8. As can
be clearly seen, the behavior is the right one and it reacts correctly to the inputs, taking unto
account the current state of the system, i.e. its history, and it is a continuous signal in the true
sense of the word.

−− | square wave signal for testing ’rcfilter’
vi3 = CT.signal [(0,λ_→2), (0.3,λ_→0), (1,λ_→1.5), (1.5,λ_→0), (1.7,λ_→1), (2.5,λ_→0)] :: CT.

Signal Rational

−− | plotting the example response of ’rcfilter’
plot31 = plotGnu $ prepareL cfg {labels=["V_I","V_O"]} $ [vi3, rcfilter vi3]

Now let us modify osc2 from fig. 3.4 to mirror the correct behavior of the circuit in fig. 3.1.
Seems to it that there is not much to do, as rcfilter already responds correctly to any input.
On the other hand the RC oscillator as represented in fig. 3.1 admits as inputs both VDD and the
control signal for sw1 and sw2. To correctly model that in ForSyDe-Atom we need to separate
the FSM which controls the state of the capacitor as charging or discharging, which in turn will
generate VI . We do that like in fig. 3.9.

−− | ODE−based RC oscillator model
osc4 :: CT.Signal Rational −− ^ VDD input signal

→ DE.Signal () −− ^ control signal of discrete impulses
→ CT.Signal Rational −− ^ output signal

osc4 vdd ctl
= let −− generator for the switch state variable

swState = DE.embedSY11 (SY.stated11 swF Charging) ctl

https://forsyde.github.io/forsyde-atom/ForSyDe-Atom-MoC.html
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Figure 3.8: Response of rcfilter

swF Charging _ = Discharging
swF Discharging _ = Charging
−− transforms VDD into VI for the RC filter
vddSwitched = DE.comb21 vddF swState $ CT.toDE vdd
vddF Charging v = v
vddF Discharging _ = λ_→0
−− state machine with ODE solver modeling an RC filter
vOut = embed (SY.state21 nsEU (λ_→0)) vddSwitched
nsEU p t s = euler 0.01 s (p $ time t) t
−− custom wrapper that embeds a SY tag−aware process into a DE environment
embed p de = let (t, v) = DE.toSY de

in SY.toDE t (p t v)
in DE.toCT vOut

swF Charging

SY.stated

DE.embedSY

vddF

DE.comb

CT

DE

nsEU t 7→ 0

SY.state

embed

DE

CT

VDD

Scontrol

VO

timestamps

Figure 3.9: ForSyDe-Atom model of the RC oscillator described by osc4

Testing osc4 against the same inputs as osc2 in fig. 3.5, we get the response plotted in fig. 3.10,
which is now the correct behavior of the RC circuit with respect to its inputs. As expected, the
output describes correctly the dynamics of the system based on the state and history of the
capacitor.
plot41 = plotGnu $ prepareL cfg {labels=["V_{DD}","V_O"]} $ [vdd22, osc4 vdd22 sCtrl]

We have shown three different models of an RC oscillator circuit represented in fig. 3.1 at
different levels of complexity, and a model of an RC bridge represented in fig. 3.6. The fact that
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Figure 3.10: Response of osc4

they are different does not mean that either is “more correct/incorrect” than the other. Either of
them might very well be treated as “correct” depending on what we consider or not the acceptable
inputs (note that we have not defined them on purpose). As expected, the more we consider the
inputs as sources of non-determinism, the more complex our model needs to be in order to cover
“special” cases. As you might guess already, this comes at a severe cost of run-time performance.

Let us briefly measure this cost in performance between the four presented models. For this,
we consider two situations:

Experiment 1 we need to find out VO at t = 2.8 seconds.

Experiment 2 we need to sample VO for the whole period t = [0, 3] seconds, with a precision of 50 millisec-
onds.

We consider the same input scenarios for all 4 models:
−− | plotting/sampling configuration for performance testing
cfgTest = defaultCfg {xmax=3, rate=0.005}
−− | VDD input for performance testing
vddTest = CT.signal [(0,λ_→2),(1,λ_→1.5),(2,λ_→1)] :: CT.Signal Rational
−− | VI input for performance testing of the RC filter model
viTest = CT.signal [(0,λ_→2),(0.5,λ_→0),(1,λ_→1.5),(1.5,λ_→0),(2,λ_→1),(2.5,λ_→0)] :: CT.

Signal Rational
−− | Switch control signal for performance testing
ctlTest = DE.signal [(0,()),(0.5,()),(1,()),(1.5,()),(2,()),(2.5,())] :: DE.Signal ()

DISCLAIMER: we have measured the performance for all experiments using the :set +s
directive in a ghci interpreter session, which offers some crude information about the run-time.
The measurements are by no means realistic for compiled and optimized programs, but rather give
a rough idea about the raw, un-optimized functions run directly in the interpreter. In any case,
this offers a common ground for comparing implementations between them to observe trends and
the influences of the design decisions, but not to judge ForSyDe-Atom as such.
λ> :set +s
λ> fromRational $ osc1 vddTest ‘CT.at‘ 2.8
4.9787192469339395e-2
(0.01 secs, 398,792 bytes)
λ> fromRational $ osc2 vddTest ctlTest ‘CT.at‘ 2.8
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4.9787192469339395e-2
(0.01 secs, 385,952 bytes)
λ> fromRational $ rcfilter viTest ‘CT.at‘ 2.8
5.169987618408467e-2
(0.08 secs, 34,044,128 bytes)
λ> fromRational $ osc4 vddTest ctlTest ‘CT.at‘ 2.8
5.169987618408467e-2
(0.07 secs, 34,047,720 bytes)

Model Experiment 1 Experiment 2
time (s) memory (MB) time (s) memory (MB)

osc1 0.01 0.4 0.09 23
osc2 0.01 0.4 0.09 18

rcfilter 0.08 34 5.04 1930
osc4 0.07 34 5.56 1930

Table 3.1: Experimental results for testing the RC models

The experimental results on an computer with Intel R© CoreTM i7-3770 CPU @ 3.40GHz ×
8 threads, and 31,4 GiB RAM are shown in table 3.1. As expected, osc1 and osc2 perform in
almost negligible time for both experiments due to lazy evaluation which performs computation
only at the requested evaluation point. However, the lazy evaluation is costly in terms of run-
time memory, fact noticed especially for rcfiler and osc4 due to the fact that intermediate
structures need to be stored before evaluating. The complexity of rcfilter and osc4 are seen
both in the execution time and in the memory consumption. Apart from the cost in performance,
model fidelity for unknown inputs came also with a high price in loss of precision due to chained
numerical computation, fact seen from the evaluation results of Experiment 1 in the interpreter
listing above. Choosing a better solver than euler, e.g. a Runge-Kutta solver, or even better, a
symbolic solver, could improve both performance and precision, but that is out of the scope of this
report. Another, rather surprising fact is that osc2 performs slightly better than osc1, probably
to the lack of tag calculus in the SY domain, i.e. tags are mainly passed untouched between
interfaces, whereas calculations are performed in a synchronous reactive manner on values only.
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Figure 3.11: Execution time and memory consumption for Experiment 2

To get a feeling of the cost complexity of the models for osc1, osc2 and osc4, we plot the
execution time and memory consumption during Experiment 2 for three resolutions: 10 mil-
liseconds, 50 milliseconds and 100 milliseconds. This way we can observe the trends in fig. 3.11,
where the most notable one is the exponential growth in execution time for osc4. This can be
explained recalling the so-called “time leaks” observed by hudak03 (among others), which occur
due to the fact that lazy evaluation forces to recalculate all previous states of the ODE solver in
order to evaluate the current sample. In functional reactive programming (FRP), a solution to
time leaks is the concept of “continuation”, which is roughly what happens when the synchronous
reactive FSM receives a new discrete event: it stores the current state to the ODE to be used in
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the future. Knowing this, let us see what happens when we double the number of discrete events
within the input VDD signal.
−− | VDD input for performance testing, having twice more discrete events than ’vddTest’
vddTest1 = CT.signal [(0,λ_→2),(0.5,λ_→2),(1,λ_→1.5),(1.5,λ_→1.5),(2,λ_→1),(2.5,λ_→1)] :: CT.

Signal Rational

3.3 Conclusion

This project is still under development...
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CHAPTER 4
The ForSyDe-Atom Standard Library

This chapter is an extended API documentation of ForSyDe-Atom Standard Li-
brary version 0.1.11 which was organized to also serve the purpose of technical report.
It treats both theoretical and practical aspects, justifying the implementation and
providing examples of usage for most of the library-exported functions. It has been
generated from the inline documentation using a Haddock2 generator.
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4.1 Introduction

The ForSyDe (Formal System Design) methodology has been developed with the objective to move
system design to a higher level of abstraction and to bridge the abstraction gap by transforma-
tional design refinement. It targets the modelling and characterization of cyber-physical systems
inheriting the theory of Models of Computation (MoCs), providing both a correct-by-construction
execution model and analyzable entry point for further synthesis flows. For more information
about ForSyDe and its associated projects please consult the ForSyDe webpage.

The forsyde-atom library is a shallow-embedded DSL implementing the execution semantics of
an atom-based approach to ForSyDe. Its purpose is to provide a modeling framework for cyber-
physical systems and to serve as a proof-of-concept for a future (non-strict typed) DSL. Adhering
to the formalism set by the PhD Thesis of Ingo Sander, the current framework views systems as
networks of processes communicating through signals. The atom-based approach to ForSyDe adds
some new important concepts:

• the separation of concerns through semantically-independent layers of computation, behav-
ior, synchronization and structure. Each layer offers a different analyzable view of a given
system and is described using the concept of higher-order functions.

• the description of each layer as a network of primitive building blocks called atoms. Each
atom embeds an undividable operation, and wraps functions of lower layers with the seman-
tics dictated by a higher layer. They are described using the powerful concept of applicative
functors.

• the complete autonomy of atoms in relation to the patterns they build. As such, process
networks or constructors are nothing but structural ad-hoc compositions that aid in achieving
complex behaviors whereas the actual behavior is dictated by the atoms alone. This is proved
(for the time being) for the Synchronization Layer by implementing all MoCs as instances
of only one type class.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=736561
https://github.com/forsyde
http://www.diva-portal.org/smash/get/diva2:9340/FULLTEXT01.pdf
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While the host language limits the possibility of providing general (e.g. proces) constructors due
to type-strictness, the forsyde-atom framework is by all means complete. In this sense the user
can create her own custom correct-by-design constructors and networks as compositions of the
provided atoms and utilities. Also, this haddock-generated page is organized both as an API
documentation and as a technical report to facilitate te use and understanding of the formal
principles behing the design process.

4.1.1 Naming convention

All multi-parameter patterns and utilities provided by the library API as higher-order functions
are named along the lines of functionMN where M represents the number of curried inputs (i.e.
a1 -> a2 -> ... -> aM), while N represents the number of tupled outputs (i.e. (b1,b2,...,bN)).
To avoid repetition we only provide documentation for functions with 2 inputs and 2 outputs
(i.e. function22), while the available ones are mentioned as a regex (i.e. function[1-4][1-4]). In
case the provided functions do not suffice, feel free to implement your own patterns following the
example in section 2.4.

4.2 ForSyDe.Atom

module ForSyDe.Atom (
ExB(extend, (/.\), (/*\), (/&\), (/!\)), Stream(NullS, (:-)),
module ForSyDe.Atom.MoC.Stream, Time, TimeStamp,
MoC(Fun, Ret, (-.-), (-*-), (-*), (-<-), (-&-)),
Skeleton((=.=), (=*=), (=\=), (=<<=), first, last),
module ForSyDe.Atom.Utility, (||<)

) where

The formal foundation upon which ForSyDe I. Sander and Jantsch, 2006 defines its semantics is
the tagged signal model Lee and Sangiovanni-Vincentelli, 1998. This is a denotational framework
introduced by Lee and Sangiovanni-Vincentelli as a common meta model for describing properties
of concurrent systems in general terms as sets of possible behaviors. Systems are regarded as com-
positions of processes acting on signals which are sets of tagged events. Signals are characterized
by a tag system which determines causality between events, and could model time, precedence
relationships, synchronization points, and other key properties. Based on how tag systems are
defined, one can identify several Models of Computations (MoCs) as classes of behaviors dictating
the semantics of execution and concurrency in a network of processes.

These concepts are the supporting pillars of ForSyDe’s philosophy, and state the purpose of the
forsyde-atom library: it is supposed to be a modelling framework used as a proof-of-concept for
the atom-based approach to cyber-physical systems Ungureanu and Ingo Sander, 2017. This
approach extends the tagged signal model by systematically deconstructing processes to their
basic semantics and recreating them using a minimal language of primitive building blocks called
atoms. It also tries to expand the scope of this model by exploiting more aspects than just timing,
by adding primitives for parallelism, behavior, etc.

The API documentation is structured as follows: this page provides an overview of the general
notions and concepts, gently introducing the separate modules and the motivation behind them.
Each major module corresponds to a separate layer Ungureanu and Ingo Sander, 2017 imple-
mented as a type class. The documentation pages for each layer and for each of their instances
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contains in-depth knowledge and examples, and can be accessed from the contents page or by
following the links suggested. For more complex examples and tutorials follow the links in the
project web page.

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.

4.2.1 The layered process model

The forsyde-atom project is led by three main policies:

1. in order to cope with the complexity of cyber-physical systems (CPS) it tries to separate
the concerns such as computation, timing, synchronization, parallelism, structure, behavior,
etc.

2. in order to have a small, ideally minimal grammar to reason about systems correctness, it
aims to provide primitive (indivisible) operators called atoms as building blocks for indepen-
dently developing complex aspects of a system’s execution through means of composition or
generalization.

3. in order to express complex behaviors with a minimal grammar, it decouples structure (com-
position) from meaning (semantics), the only semantics carriers being atoms. Thus complex
behaviors can be described in terms of patterns of atoms. Using ad-hoc polymorphism,
atoms can be overloaded with different semantics triggered by the data type they input,
whereas their composition is always the same.

atom the elementary (primitive, indivisible) constructor which embeds a set of semantics relevant
for their respective layer (e.g. timing, behavioural, structural, etc.)

atom patterns meaningful compositions of atoms. They are provided as constructors which need
to be properly instantiated in order to be used. We also use the term "pattern" to differen-
tiate atom compositions as constructors from atoms as constructors.

The first policy, i.e. the separation of concerns led to the so-called layered process model which is
reflected in the library by providing separate major modules associated with each layer. Layers as
such are independent collections of entities for modeling different aspects of CPS. These aspects
interact through means of higher-order functions, wrapping each other in as structured fashion in
a way which can be visualized as below.

Layers are implemented as type classes which imply:

• atoms as function signatures belonging to the type class;

• patterns which are compositions atoms, provided as constructors;

• data types for all the classes of behaviors concerning the aspect described by the layer in
question. These types instantiate the above type class and overload the atoms with semantics
in accordance to the behavior described. For example, the MoC layer is currently instantiated
by types describing the CT, DE, SY and SDF MoCs.

https://github.com/forsyde/forsyde-atom
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In order to model interleaving aspects of CPS, layers interact with each other through means of
higher order functions. As such, each layer describes some atoms as higher-order functions which
take entities belonging to another layer as arguments. Intrinsically, the data types belonging
to a layer may be wrapping types of other layers, as depicted in the figure above. For a short
comprehensive overview on layers, please refer to Ungureanu and Ingo Sander, 2017.

By convention, the first (innermost) layer is always the function layer which describes arbitrary
functions on data and expresses the system’s functional aspects. In the following paragraphs
we will give an overview of the "outer" layers currently implemented in forsyde-atom, which in
comparison, express the extra-functional aspects of a system (timing, behavior, synchronization,
and so on).

4.2.2 The Extended Behavior (ExB) Layer

As seen in layered process model, the extended behavior layer expands the set of possible behaviors
implied by a layer (typically the function layer), by defining a set of symbols with known semantics,
and adding it to (i.e. wrapping) the pool of possible values or states.

While semantically the ExB layer extends the value pool in order to express special events (e.g.
error messages or even the complete absence of events), it practically provides an independent
environment to model events with a default/known response, independently of the data path.
These responses are particularly captured by atoms, thus enforcing the high-level separation of
concerns between e.g. control and data paths.

This layer provides:

• a set of extended behavior atoms defining the interfaces for the resolution and response
functions, as part of the ExB type class (see below).

• a library of function wrappers as specific atom patterns (Check the ForSyDe.Atom.ExB module
for extensive documentation).

• a set of data types defining classes of behaviors and instantiating the ExB type class (check
the links in the instances section for extensive documentation).

class Functor b => ExB b where
Class which defines the atoms for the extended behavior layer.
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As its name suggests, this layer is extending the behavior of processes (or merely of functions
if we ignore timing semantics completely), by expanding the domains of the wrapped layer
(e.g. the set of values) with symbols having clearly-defined semantics (e.g. special events
with known responses).
The types associated with this layer can simply be describes as:

B(α) = α ∪ b
where α is a base type and b is the type extension, i.e. a set of symbols with clearly-defined
semantics.
Extended behavior atoms are functions of these types, defined as interfaces in the ExB type
class.

Methods

extend :: a -> b a
Extends a value (from a layer below) with a set of symbols with known semantics, as
described by a type instantiating this class.

(/.\) :: (a -> a) -> b a -> b a
Basic functor operator. Lifts a function (from a layer below) into the domain of the
extended behavior layer.

� : (α → β) → B(α) → B(β)
(/*\) :: b (a -> a) -> b a -> b a

Applicative operator. Defines a res between two extended behavior symbols.

� : B(α → β) → B(α) → B(β)
(/&\) :: b Bool -> b a -> b a

Predicate operator. Generates a defined behavior based on an extended Boolean pred-
icate.

� : B(Bool) → B(α) → B(α)
(/!\) :: a -> b a -> a

Degrade operator. Degrades a behavior-extended value into a non-extended one (from
a layer below), based on a kernel value. Used also to throw exceptions.

� : α → B(α) → α

instance ExB AbstExt
Implements the absent semantics of the extended behavior atoms.

4.2.3 The Model of Computation (MoC) Layer

This layer represents a major part of the forsyde-atom library and is concerned in modeling the
timing aspects of CPS. While its foundations have been layered in the classical ForSyDe I. Sander
and Jantsch, 2006, it is mainly inspired from Lee and Sangiovanni-Vincentelli, 1998 an it tries to
follow the tagged signal model as closely as it is permitted by the host language, and with the
adaptations require by the atom approach.

Although a short introduction of the tagged signal model has been written in the introduction of
this documentation, we feel obliged to provide a primer in the classical ForSyDe theory in order
to understand how everything fits together.

Signals

Lee and Sangiovanni-Vincentelli, 1998 defines signals as (ordered) sets of events where each event
is composed of a tag T and a value V. Similarly, in ForSyDe a signal is defined as a (partially
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or totally) ordered sequence of events that enables processes to communicate and synchronize.
Sequencing might infer an implicit order of events, but more importantly it determines an order
of evaluation, which is a key piece of a simulation engine.

s = {e0, e1, ...} ∈ S

where ej = (tj , vj)

vj ∈ V, tj ∈ T

tj ≤ tj+1, ∀ j ∈ N

In ForSyDe-Atom, sequencing is achieved using the Stream data type, inspired from Reekie, 1995.
In ForSyDe-Atom, signals are streams that carry events, where each type of event is identified by
a type constructor which defines its tag system. In other words, we can state that through its tag
system, a signal is bound to a MoC.

data Stream e
= NullS terminates a signal
| e (:-) (Stream e) the default constructor appends an

event to the head of the stream
Defines a stream of events, encapsulating them in a structure isomorphic to an infinite list
R. S. Bird, 1987, thus all properties of lists may also be applied to Streams. While, in
combination with lazy evaluation, it is possible to create and simulate infinite signals, we
need to ensure that the first/previous event is always fully evaluated. This can be translated
into the following rule:

zero-delay feedbacks are forbidden, due to un-evaluated self-referential calls. In a feed-
back loop, there always has to be enough events to ensure the data flow.

This rule imposes that the stream of data is uninterrupted in order to have an evaluatable
kernel every time a new event is produced (i.e. to avoid deadlocks). Thus we can add the
rule:

cleaning of output events is also forbidden. In other words, for each new input at any
instant in time, a process must react with at least one output event.

instance Functor Stream
allows for the mapping of an arbitrary function (a -> b) upon all the events of a (Stream
a).

instance Applicative Stream
enables the Stream to behave like a ZipList

instance Foldable Stream
provides folding functions useful for implementing utilities, such as length.

instance Read a => Read (Stream a)
signal (1 :- 2 :- NullS) is read using the string "{1,2}".

instance Show a => Show (Stream a)
signal (1 :- 2 :- NullS) is represented as {1,2}.

instance Plottable a => Plot (Signal a)
SY signals.

instance Plottable a => Plot (Signal a)
SDF signals.

instance Plottable a => Plot (Signal a)
DE signals.
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instance Plottable a => Plot (Signal a)
CT signals.

For extended documentation and a list of all utilities associated with the Stream type you can
consult:

module ForSyDe.Atom.MoC.Stream

Processes

As described in Lee and Sangiovanni-Vincentelli, 1998, processes are either "set of possible be-
haviors" of signals or "relations" between multiple signals. One can describe complex systems by
composing processes, which in this case is interpreted as the "intersection of the behaviors of each
of the processes being involved".

monotonicity In order to ensure causal order and determinancy, processes need to be monotonic
Lee and Sangiovanni-Vincentelli, 1998. A signal’s tags (if explicit) must be a partial or total
order and all tag alterations must be monotonic.

ForSyDe inherits this definition with respect to a functional view, thus a process p is a func-
tional mapping over (the history of) signals. A process can only be instantiated using a process
constructor pc, which is a higher order function embedding MoC semantics and/or a specific
composition, but lacking functionality.

p : Sm → Sn ∈ P
p(s, ...) = (s, ...)

pcM : V n → P ∈ PC
pcM(v, ...) = p

Since processes are functions, process composition is equivalent to function composition. This
means that composing two processes p1 and p2 grants the process p2 . p1

p1 :: Signal α -> Signal β
p2 :: Signal β -> Signal γ
p2 . p1 :: Signal α -> Signal γ

This implies that there is a signal Signal β that "streams" the result from p1 to p2, as suggested
in the drawing:

p1 : Sα → Sβ

p2 : Sβ → Sγ

p2 ◦ p1 : Sα → Sγ

(p2 ◦ p1)(s) ≡ p2(p1(s))

p1 p2sα
sβ

sγ

Process networks describe ForSyDe systems in terms of compositions of processes and originate
from Reekie’s process nets Reekie, 1995. A process network is a process itself, i.e. function from
signal(s) to signal(s). The composition above p2 . p1 can also be regarded as a process network.

In ForSyDe-Atom atoms can be regarded as process constructors as their instantiations are func-
tions on signals of events. Instantiations of atom patterns are the exact equivalent of process
networks, which themselves are also processes, depending on the level of abstraction you are
working with (hierarchical blocks vs. flat structures).
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To understand the versatility of composition and partial application in building process construc-
tors, consider the example above where composition of two processes infers a signal between them.
This mechanism also works when composing constructors (un-instantiated atoms), which yields
another constructor. By instantiating (fully applying) the new constructor we obtain a process
network equivalent to the composition of the respective primitive processes obtained by instanti-
ating (fully applying) the component atoms, like in the example below:

p1(s1) = (+)! s1

p2(s1, s2) = s1 " s2

pn(s1, s2) = (p2(s2) ◦ p1)(s1)
pc′(f)(s1, s2) = (" s2) ◦ (f ! s1)

p′(s1, s2) = pc′ (+)(s1, s2)

pn ≡ p′

!

"

S(α)

S(β) S(γ)
S(β → γ)

(α → β → γ)

Now if we visualize process networks as graphs, where processes are nodes and signals are edges,
a meaningful process composition could be regarded as graph patterns. Therefore it is safe to
associate process constructors as patterns in process networks.

Models of Computation

As mentioned in the introduction, MoCs are classes of behaviors dictating the semantics of exe-
cution and concurrency in a network of processes. Based on the definitions of their tag systems
ForSyDe identifies MoCs as:

1. timed where T is a totally ordered set and t express the notion of physical time (e.g.
continuous time CT, discrete event DE) or precedence (e.g. synchronous SY);

2. untimed, where T is a partially ordered set and t is expressed in terms of constraints on the
tags in signals (e.g. dataflow, synchronous data flow SDF).

As concerning MoCs, ForSyDe implements the execution semantics through process constructors,
abstracting the timing model and inferring a schedule of the process network. In ForSyDe-Atom
all atoms embed operating semantics dictated by a certain MoC and are side-effect-free. This
ensures the functional correctness of a system even from early design stages.

Representing Time

For explicit time representation, ForSyDe-atom provides two distinct data types.

type Time = Rational
Type alias for the type to represent metric (continuous) time. Underneath we use Rational
that is able to represent any t between t1 < t2 ∈ T.

type TimeStamp = DiffTime
Alias for the type representing discrete time. It is inherently quantizable, the quantum be-
ing a picosecond (10-12 seconds), thus it can be considered order-isomorphic with a set of
integers, i.e. between any two timestamps there is a finite number of timestamps. Moreover,
a timestamp can be easily translated into a rational number representing fractions of a sec-
ond, so the conversion between timestamps (discrete time) and rationals (analog/continuous
time) is straightforward.
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This type is used in the explicit tags of the DE MoC (and subsequently the discrete event
evaluation engine for simulating the CT MoC).

MoC Layer Overview

This layer consists of:

• 4 atoms as infix operators, implemented as methods of the type class MoC. Since each MoC
is determined by its tag system, we expose this which are instances of this class. Thus an
event’s type will trigger an atom to behave in accordance to its associated MoC.

• a library of meaningful atom patterns as process constructors. (Check the ForSyDe.Atom.MoC
module for extensive documentation).

• a set of data types defining tag systems through the structure of events (i.e. T × V ).
They are instances of the MoC type class and define the rules of execution that will trigger an
atom to behave in accordance to its associated MoC. For each supported MoC, forsyde-atom
provides a module which defines the signal (event) type, but also a set of utilities and process
constructors as specific instantiations of atom patterns. (Check the links in the instances
section for extensive documentation).

class Applicative e => MoC e where
This is a type class defining interfaces for the MoC layer atoms. Each model of computation
exposes its tag system through a unique event constructor as an instance of this class, which
defines T × V.

To express all possible MoCs which can be described using a tagged signal model we need to
capture the most general form of their atoms. Recall that all atoms in the layered framework
are represented as higher-order functions on structured types (instances of this class), taking
functions of other (lower) layers as arguments. While this principle stands also for this layer,
the functions taken as arguments need to be formatted for each MoC in particular in order to
capture additional information, which we can call in general terms as the execution context.

One typical example of additional information is the consumption and production rates of
for data flow MoCs (e.g. SDF). In this case the passed functions are defined over "partitions"
of events, i.e. groupings of events with the same partial order in relation to, for example, a
process firing. The formal description of such a "formatted function" taken as argument by
a MoC entity is:

ȧ→ ḃ ≡ α̇1 × α̇2 × ...→ β̇1 × β̇2 × ...
where a and b might be Cartesian products of different types, corresponding to how many
signals the constructor is applied to or how many signals it yields, and each type is expressed
as:

α̇ = αr

r ∈





{1}, for all timed MoCs (e.g. SY, DE, CT)

N, for static variants of SDF

Nn, for CSDF

S × N→ N, where S is a state space,

in the most general case of untimed data flow

While, as you can see above, the execution context can be extracted from the type informa-
tion, working with type-level parameters is not a trivial task in Haskell, especially if we want
to describe a general and extensible type class. This is why we have chosen a pragmatic
approach in implementing the MoC class:
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• any (possible) Cartesian product of α is represented using a recursive type, namely a
list [α].

• as the execution context cannot (or can hardly) be extracted from the recursive type, in
the most general case we pass both context and argument as a pair (see each instance
in particular). To aid in pairing contexts with each argument in a function, the ctxt
utilities are provided (see ctxt22).

• this artifice was masked using the generic type families Fun and Res.

Methods

Fun e a b
This is a type family alias for a context-bound function passed as an argument to a MoC
atom. In the most simple case it can be regarded as an enhanced -> type operator.
While hiding the explicit definition of arguments, this implementation choice certainly
has its advantages in avoiding unnecessary or redundant type constructors (see version
0.1.1 and prior). Aliases are replaced at compile time, thus not affecting run-time
performance.

α̇ → β

Ret e b
As with Fun, this alias hides a context-bound value (e.g. function return). Although the
definition seems to be redundant with Fun, this alias is needed for utilities to recreate
clean types again (see -*).

β̇

(-.-) :: Fun e a b -> Stream (e a) -> Stream (e b)
This atom is mapping a function on values (in the presence of a context) to a signal,
i.e. stream of tagged events. As ForSyDe deals with determinate, functional processes,
this atom defines the (only) behavior of a process in rapport to one input signal Lee
and Sangiovanni-Vincentelli, 1998.

! : (α̇ → β) → S(α) → S(β)
(-*-) :: Stream (e (Fun e a b)) -> Stream (e a) -> Stream (e b)

This atom synchronizes two signals, one carrying functions on values (in the presence
of a context), and the other containing values, during which it applies the former on
the latter. As concerning the process created, this atom defines a relation between two
signals Lee and Sangiovanni-Vincentelli, 1998.

" : S(α̇ → β) → S(α) → S(β)
(-*) :: Stream (e (Ret e b)) -> Stream (e b)

Artificial utility which drops the context and/or partitioning yielding a clean signal
type.

S(β̇) → S(β)
(-<-) :: Stream (e a) -> Stream (e a) -> Stream (e a)

This atom appends a (partition of) events at the beginning of a signal. This atom
is necessary to ensure complete partial order of a signal and assures the least upper
bound necessary for example in the evaluation of feedback loops Lee and Sangiovanni-
Vincentelli, 1998.

# : α̇ → S(α) → S(α)
Notice the difference between the formal and the implemented type signatures. In the
implementation the value/partition is wrapped inside an event type to enable smooth
composition. You might also notice the type for the initial event(s) as being wrapped
inside a signal constructor. This allows defining an DSL for this layer which is centered
around signals exclusively, while also enabling to define atoms as homomorphisms to
certain extent R. Bird and Moor, 1997. Certain MoCs might have additional constraints
on the first operand to be finite.
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(-&-) :: Stream (e a) -> Stream (e a) -> Stream (e a)
This atom allows the manipulation of tags in a signal in a restrictive way which preserves
monotonicity and continuity in a process Lee and Sangiovanni-Vincentelli, 1998, namely
by phase-shifting all tags in a signal with the appropriate metric corresponding to each
MoC. Thus it preserves the characteristic function intact I. Sander and Jantsch, 2006.

$ : T → S(α) → S(α)
As with the -<- atom, we can justify the type signature for smooth composition and
the definition of atoms as homomorphisms to certain extent. This in turn allows the
interpretation of the -Methods- operator as aligning the phases of two signals: the

second operand is aligned based on the first.

instance MoC SY
Implenents the execution and synchronization semantics for the SY MoC through its atoms.

instance MoC SDF
Implenents the SDF semantics for the MoC atoms

instance MoC DE
Implenents the execution and synchronization semantics for the DE MoC through its atoms.

instance MoC CT
Implenents the execution and synchronization semantics for the CT MoC through its atoms.

4.2.4 The Skeleton Layer

The skeleton layer describes recursive and regular composition of processes which expose inherent
potential for parallelism. As such, it wraps lower layer entities (i.e. processes, signals), into
regular structures called categorical types. Most of the ground work for this layer is based on
the categorical type theory R. Bird and Moor, 1997, which enable the description of algorithmic
skeletons as high-level constructs encapsulating parallelism and communication with an associated
cost complexity.

This layer provides:

• 3 atoms as infix operators which, as demonstrated in R. Bird and Moor, 1997 and Skillicorn,
1994, are enough to describe all algorithmic skeletons.

• a library of generic skeletons as specific atom patterns. (Check the ForSyDe.Atom.Skeleton
module for extensive documentation).

• a set of different categorical types which implement these atoms, as instances of the Skeleton
type class. These types provide additional skeletons patterns of atoms which takes as argu-
ments their own type constructors. (Check the links in the instances section for extensive
documentation).

class Functor c => Skeleton c where
Class containing all the Skeleton layer atoms.
This class is instantiated by a set of categorical types, i.e. types which describe an inherent
potential for being evaluated in parallel. Skeletons are patterns from this layer. When skele-
tons take as arguments entities from the MoC layer (i.e. processes), the results themselves
are parallel process networks which describe systems with an inherent potential to be im-
plemented on parallel platforms. All skeletons can be described as composition of the three
atoms below (=«= being just a specific instantiation of =\=). This possible due to an existing
theorem in the categorical type theory, also called the Bird-Merteens formalism R. Bird and
Moor, 1997:
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factorization A function on a categorical type is an algorithmic skeleton (i.e. catamor-
phism) iff it can be represented in a factorized form, i.e. as a map composed with a
reduce.

Consequently, most of the skeletons for the implemented categorical types are described in
their factorized form, taking as arguments either:

• type constructors or functions derived from type constructors
• processes, i.e. MoC layer entities

Most of the ground-work on algorithmic skeletons on which this module is founded has been
laid in R. Bird and Moor, 1997, Skillicorn, 1994 and it founds many of the frameworks
collected in Fischer, Gorlatch, and Bischof, 2003.

Methods

(=.=) :: (a -> b) -> c a -> c b
Atom which maps a function on each element of a structure (i.e. categorical type),
defined as:

2 : (α → β) → S(α) → S(β)
=.= together with =*= form the map pattern.

(=*=) :: c (a -> b) -> c a -> c b
Atom which applies the functions contained by as structure (i.e. categorical type), on
the elements of another structure, defined as:

3 : C(α → β) → C(α) → C(β)
=.= together with =*= form the map pattern.

(=\=) :: (a -> a -> a) -> c a -> a
Atom which reduces a structure to an element based on an associative function, defined
as:

4 : (α× α→ α)→ C(α)→ α

(=«=)
Skeleton which pipes an element through all the functions contained by a structure.
N.B.: this is not an atom. It has an implicit definition which might be augmented by
instances of this class to include edge cases.

1 : C(α→ α)× α→ α

1 = (◦)4
As the composition operation is not associative, we cannot treat pipe as a true re-
duction. Alas, it can still be exploited in parallel since it exposes another type of
parallelism: time parallelism.

first :: c a -> a
Returns the first element in a structure.N.B.: this is not an atom. It has an implicit
definition which might be replaced by instances of this class with a more efficient
implementation.

firstS : C(α) → α

firstS = (λ a b→ a)4

last :: c a -> a
Returns the last element in a structure.N.B.: this is not an atom. It has an implicit
definition which might be replaced by instances of this class with a more efficient
implementation.

lastS : C(α) → α

lastS = (λ a b→ b)4

instance Skeleton Vector
Ensures that Vector is a structure associated with the Skeleton Layer.
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4.2.5 Utilities

The Atom module exports a set of utility functions, mainly for aiding the designer to avoid working
with zipped tuples which might pollute the design. Utilities are function without any semantical
value (thus not considered atoms). They operate on and might alter the structure of some datum,
but it does not affect its state.

For a list of all the provided utilities, please consult the following module:

module ForSyDe.Atom.Utility

Among the most useful utilities we mentions the unzip function. Recall that in all our definitions
for patterns, they were expressed in the most general form as functions from n-ary Cartesian
products to m-ary Cartesian products. While partial application provides a versatile mechanism
that can translate n-ary inputs into curried arguments (which is very powerful in combination
with an applicative style), we cannot do so for return types. For the latter we must rely on
tuples. But working with tuples of data wrapped in several layers of structures becomes extremely
cumbersome. Take for example the case of a process constructed with pc in equation (1) below.
Using only the provided atoms to implement pc would give us a process which returns only one
signal of a tuple and not, as we would like, a tuple of signals of events.

pc : (α→ βn) → S(α) → S(βn) (1)

/ : S(βn) → S(β)n (2)

(pc f/) : S(α) → S(β)n (3)

/S(βn)

S(β1)

S(β2)

S(βn)

...

Therefore, by implementing all data types associated with signals and events as instances of
Functor, we were able to provide a (set of) unzip utility functions defined as in equation (2) above,
in the ForSyDe.Atom.Utility module. Mind that we call unzip a utility and not an atom, since
it has no synchronization nor behavior semantic. It just conveniently "lifts" the wrapped tuples
in order to create "collections" of events and signals, and it is imposed by the mechanisms of the
type system in the host language.

(||<) :: (Functor f1, Functor f2) =>
f1 (f2 (a1, a2)) -> (f1 (f2 a1), f1 (f2 a2))

This set of utility functions "unzip" nested n-tuples, provided as postfix operators. They
are crucial for reconstructing data types from higher-order functions which input functions
with multiple outputs. It relies on the nested types being instances of Functor.
The operator convention is (|+<+), where the number of | represent the number of layers
the n-tuple is lifted, while the number of < + 1 is the order n of the n-tuple.
ForSyDe.Atom.Utility exports the constructors below. Please follow the examples in the
source code if they do not suffice:

|<, |<<, |<<<, |<<<<, |<<<<<, |<<<<<<, |<<<<<<<, |<<<<<<<<,
||<, ||<<, ||<<<, ||<<<<, ||<<<<<, ||<<<<<<, ||<<<<<<<, ||<<<<<<<<,

|||<, |||<<, |||<<<, |||<<<<, |||<<<<<, |||<<<<<<, |||<<<<<<<, |||<<<<<<<<,
||||<, ||||<<, ||||<<<, ||||<<<<, ||||<<<<<, ||||<<<<<<, ||||<<<<<<<, ||||<<<<<<<<,

Example:
λ> :set -XPostfixOperators
λ> ([Just (1,2,3), Nothing, Just (4,5,6)] ||<<)
([Just 1,Nothing,Just 4],[Just 2,Nothing,Just 5],[Just 3,Nothing,Just 6])
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4.3 ForSyDe.Atom.ExB

module ForSyDe.Atom.ExB (
ExB(extend, (/.\), (/*\), (/&\), (/!\)), res22, filter, filter’,
degrade, ignore22

) where

This module exports the core entities of the extended behavior layer: interfaces for atoms and
common patterns of atoms. It does NOT export any implementation or instantiation of any
specific behavior extension type.

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.

4.3.1 Atoms

class Functor b => ExB b where
Class which defines the atoms for the extended behavior layer.

As its name suggests, this layer is extending the behavior of processes (or merely of functions
if we ignore timing semantics completely), by expanding the domains of the wrapped layer
(e.g. the set of values) with symbols having clearly-defined semantics (e.g. special events
with known responses).

The types associated with this layer can simply be describes as:

B(α) = α ∪ b
where α is a base type and b is the type extension, i.e. a set of symbols with clearly-defined
semantics.

Extended behavior atoms are functions of these types, defined as interfaces in the ExB type
class.

Methods

extend :: a -> b a Source
Extends a value (from a layer below) with a set of symbols with known semantics, as
described by a type instantiating this class.

(/.\) :: (a -> a) -> b a -> b a
Basic functor operator. Lifts a function (from a layer below) into the domain of the
extended behavior layer.

� : (α → β) → B(α) → B(β)
(/*\) :: b (a -> a) -> b a -> b a

Applicative operator. Defines a res between two extended behavior symbols.

� : B(α → β) → B(α) → B(β)
(/&\) :: b Bool -> b a -> b a Source

Predicate operator. Generates a defined behavior based on an extended Boolean pred-
icate.

� : B(Bool) → B(α) → B(α)
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(/!\) :: a -> b a -> a Source
Degrade operator. Degrades a behavior-extended value into a non-extended one (from
a layer below), based on a kernel value. Used also to throw exceptions.

� : α → B(α) → α

instance ExB AbstExt
Implements the absent semantics of the extended behavior atoms.

4.3.2 Patterns

res22
:: ExB b
=> (a1 -> a2 -> (a1’, a2’)) function on values
-> b a1 first input
-> b a2 second input
-> (b a1’, b a2’) tupled output

� : (V n → V m) → Bn → Bm

f � (b1, b2, ...bn) = f � b1 � b2 � ...� bn/

The res behavior pattern lifts a function on values to the extended behavior domain, and
applies a resolution between two extended behavior symbols.

Constructors: res[1-8][1-4].

filter :: ExB b => b Bool -> b a -> b a
Prefix name for the prefix operator /&\.

filter’ :: ExB b => Bool -> a -> b a
Same as filter but takes base (non-extended) values as input arguments.

degrade :: ExB b => a -> b a -> a
Prefix name for the degrade operator /!\.

ignore22
:: ExB b
=> (a1 -> a2 -> a1’ -> a2’ -> (a1, a2)) function of Y + X arguments
-> a1
-> a2
-> b a1’
-> b a2’
-> (a1, a2)

ignoreB : (V n × V m → V n)→ V n × Bm → V n

ignoreB(f)(a
n, bm) = an � (f(an)� bm)

The ignoreXY pattern takes a function of Y + X arguments, Y basic inputs followed by X
behavior-extended inputs. The X behavior-extended arguments are subjugated to a res, and
the result is then degraded using the first Y arguments as fallback. The effect is similar to
"ignoring" a the result of a res function if ∈ b.

The main application of this pattern is as extended behavior wrapper for state machine
functions which do not "understand" extended behavior semantics, i.e. it simply propagates
the current state (∈ α) if the inputs (their res) belongs to the set of extended values (∈ b).

Constructors: ignore[1-4][1-4].
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4.4 ForSyDe.Atom.ExB.Absent

module ForSyDe.Atom.ExB.Absent (
AbstExt(Abst, Prst)

) where

This module implements the constructors and assocuated utilities of a type which extends the
behavior of a function to express "absent events" (see Halbwachs et al., 1991).

The AbstExt type can be used directly with the atom patterns defined in ForSyDe.Atom.ExB, and
no helpers or utilities are needed. Example usage:
λ> res21 (+) (Prst 1) (Prst 2)
3
λ> res21 (+) Abst Abst
⊥
λ> filter Abst (Prst 1)
⊥
λ> filter (Prst False) (Prst 1)
⊥
λ> filter (Prst True) (Prst 1)
1
λ> filter’ False 1 :: AbstExt Int
⊥
λ> filter’ True 1 :: AbstExt Int
1
λ> degrade 0 (Prst 1)
1
λ> degrade 0 Abst
0
λ> ignore11 (+) 1 (Prst 1)
2
λ> ignore11 (+) 1 Abst
1
λ> res21 (+) (Prst 1) Abst
*** Exception: [ExB.Absent] Illegal occurrence of an absent and present event

data AbstExt a
= Abst ⊥ denotes the absence of a value
| Prst a > a present event with a value
The AbstExt type extends the base type with the ’⊥’ symbol denoting the absence of a
value/event (see Halbwachs et al., 1991).

instance Functor AbstExt
Functor instance. Bypasses the special values and maps a function to the wrapped value.
Provides the (<$>) operator.

instance Applicative AbstExt
Applicative instance. Check source code for the lifting rules. Provides the (<*>) operator

instance ExB AbstExt
Implements the absent semantics of the extended behavior atoms.

instance Eq a => Eq (AbstExt a)

instance Read a => Read (AbstExt a)
Reads the ’_’ character to an Abst and a normal value to Prst-wrapped one.
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instance Show a => Show (AbstExt a)
Shows Abst as ’⊥’, while a present event is represented with its value.

instance (Show a, Plottable a) => Plottable (AbstExt a)
Absent-extended plottable types

4.5 ForSyDe.Atom.MoC

module ForSyDe.Atom.MoC (
MoC(Fun, Ret, (-.-), (-*-), (-*), (-<-), (-&-)), delay, comb22,
reconfig22, state22, stated22, moore22, mealy22, ctxt22, warg, wres,
(-*<)

) where

This module exports the core entities of the MoC layer: interfaces for atoms and process con-
structors as patterns of atoms. It does NOT export any implementation or instantiation of any
specific MoC.

Current MoC implementations can be used by importing their respective modules:

• ForSyDe.Atom.MoC.CT

• ForSyDe.Atom.MoC.DE

• ForSyDe.Atom.MoC.SY

• ForSyDe.Atom.MoC.SDF

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.

4.5.1 Atoms

class Applicative e => MoC e where
This is a type class defining interfaces for the MoC layer atoms. Each model of computation
exposes its tag system through a unique event constructor as an instance of this class, which
defines T × V.

To express all possible MoCs which can be described using a tagged signal model we need to
capture the most general form of their atoms. Recall that all atoms in the layered framework
are represented as higher-order functions on structured types (instances of this class), taking
functions of other (lower) layers as arguments. While this principle stands also for this layer,
the functions taken as arguments need to be formatted for each MoC in particular in order to
capture additional information, which we can call in general terms as the execution context.

One typical example of additional information is the consumption and production rates of
for data flow MoCs (e.g. SDF). In this case the passed functions are defined over "partitions"
of events, i.e. groupings of events with the same partial order in relation to, for example, a
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process firing. The formal description of such a "formatted function" taken as argument by
a MoC entity is:

ȧ→ ḃ ≡ α̇1 × α̇2 × ...→ β̇1 × β̇2 × ...
where a and b might be Cartesian products of different types, corresponding to how many
signals the constructor is applied to or how many signals it yields, and each type is expressed
as:

α̇ = αr

r ∈





{1}, for all timed MoCs (e.g. SY, DE, CT)

N, for static variants of SDF

Nn, for CSDF

S × N→ N, where S is a state space,

in the most general case of untimed data flow

While, as you can see above, the execution context can be extracted from the type informa-
tion, working with type-level parameters is not a trivial task in Haskell, especially if we want
to describe a general and extensible type class. This is why we have chosen a pragmatic
approach in implementing the MoC class:

• any (possible) Cartesian product of α is represented using a recursive type, namely a
list [α].
• as the execution context cannot (or can hardly) be extracted from the recursive type, in

the most general case we pass both context and argument as a pair (see each instance
in particular). To aid in pairing contexts with each argument in a function, the ctxt
utilities are provided (see ctxt22).
• this artifice was masked using the generic type families Fun and Res.

Methods

Fun e a b Source
This is a type family alias for a context-bound function passed as an argument to a MoC
atom. In the most simple case it can be regarded as an enhanced -> type operator.
While hiding the explicit definition of arguments, this implementation choice certainly
has its advantages in avoiding unnecessary or redundant type constructors (see version
0.1.1 and prior). Aliases are replaced at compile time, thus not affecting run-time
performance.

α̇ → β

Ret e b Source
As with Fun, this alias hides a context-bound value (e.g. function return). Although the
definition seems to be redundant with Fun, this alias is needed for utilities to recreate
clean types again (see -*).

β̇

(-.-) :: Fun e a b -> Stream (e a) -> Stream (e b) Source
This atom is mapping a function on values (in the presence of a context) to a signal,
i.e. stream of tagged events. As ForSyDe deals with determinate, functional processes,
this atom defines the (only) behavior of a process in rapport to one input signal Lee
and Sangiovanni-Vincentelli, 1998.

! : (α̇ → β) → S(α) → S(β)
(-*-) :: Stream (e (Fun e a b)) -> Stream (e a) -> Stream (e b) Source

This atom synchronizes two signals, one carrying functions on values (in the presence
of a context), and the other containing values, during which it applies the former on
the latter. As concerning the process created, this atom defines a relation between two
signals Lee and Sangiovanni-Vincentelli, 1998.

" : S(α̇ → β) → S(α) → S(β)
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(-*) :: Stream (e (Ret e b)) -> Stream (e b) Source
Artificial utility which drops the context and/or partitioning yielding a clean signal
type.

S(β̇) → S(β)
(-<-) :: Stream (e a) -> Stream (e a) -> Stream (e a) Source

This atom appends a (partition of) events at the beginning of a signal. This atom
is necessary to ensure complete partial order of a signal and assures the least upper
bound necessary for example in the evaluation of feedback loops Lee and Sangiovanni-
Vincentelli, 1998.

# : α̇ → S(α) → S(α)
Notice the difference between the formal and the implemented type signatures. In the
implementation the value/partition is wrapped inside an event type to enable smooth
composition. You might also notice the type for the initial event(s) as being wrapped
inside a signal constructor. This allows defining an DSL for this layer which is centered
around signals exclusively, while also enabling to define atoms as homomorphisms to
certain extent R. Bird and Moor, 1997. Certain MoCs might have additional constraints
on the first operand to be finite.

(-&-) :: Stream (e a) -> Stream (e a) -> Stream (e a) Source
This atom allows the manipulation of tags in a signal in a restrictive way which preserves
monotonicity and continuity in a process Lee and Sangiovanni-Vincentelli, 1998, namely
by phase-shifting all tags in a signal with the appropriate metric corresponding to each
MoC. Thus it preserves the characteristic function intact I. Sander and Jantsch, 2006.

$ : T → S(α) → S(α)
As with the -<- atom, we can justify the type signature for smooth composition and
the definition of atoms as homomorphisms to certain extent. This in turn allows the
interpretation of the -Methods- operator as aligning the phases of two signals: the

second operand is aligned based on the first.

instance MoC SY
Implenents the execution and synchronization semantics for the SY MoC through its atoms.

instance MoC SDF
Implenents the SDF semantics for the MoC atoms

instance MoC DE
Implenents the execution and synchronization semantics for the DE MoC through its atoms.

instance MoC CT
Implenents the execution and synchronization semantics for the CT MoC through its atoms.

4.5.2 Process constructors

Process constructors are defined as patterns of MoC atoms. Check the naming convention of the
API in the page description.

delay :: MoC e => Stream (e a) -> Stream (e a) -> Stream (e a)

% : T × α̇→ S(α)→ S(α)

$# %≡
α̇T

The delay process provides both initial token(s) and shifts the phase of the signal. In other
words, it "delays" a signal with one or several events.
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There is also an infix variant -&>- (infixl 3). To justify the first argument, see the docu-
mentation of the -<- atom.

comb22
:: MoC e
=> Fun e a1 (Fun e a2 (Ret e b1, Ret e b2)) combinational function (*)
-> Stream (e a1) first input signal
-> Stream (e a2) second input signal
-> (Stream (e b1), Stream (e b2)) two output signals

(*) to be read a1 -> a2 -> (b1, b2) where each argument and result might be individually
wrapped with a context and might also express a partition.

 : (V̇ n → V̇ m) → Sn → Sm

f  (s1, s2, ...sn) = f ! s1 " s2 " ..." sn/

!

"

" /

· · · · · ·
≡  

f

f

The comb processes takes care of synchronization between signals and maps combinatorial
functions on their event values.

This library exports constructors of type comb[1-8][1-4].

reconfig22
:: MoC e
=> Stream (e (Fun e a1 (Fun e a2 (Ret e b1, Ret e

b2))))
signal carrying functions (*)

-> Stream (e a1) first input signal
-> Stream (e a2) second input signal
-> (Stream (e b1), Stream (e b2)) two output signals

(*) to be read a1 -> a2 -> (b1, b2) where each argument and result might be individually
wrapped with a context and might also express a partition.

reconfigM : S(V̇ n → V̇ m) → Sn → Sm

reconfigM (sf, s1, s2, ...sn) = f ! s1 " s2 " ..." sn/

sf

"

" /

· · · · · ·

The reconfig processes constructs adaptive processes, where the first signal carries functions,
and it is synchronized with all the other signals.

This library exports constructors of type reconfig[1-8][1-4].

state22
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:: MoC e
=> Fun e st1 (Fun e st2 (Fun e a1 (Fun e a2 (Ret e

st1, Ret e st2))))
next state function (*)

-> (Stream (e st1), Stream (e st2)) initial state(s) (**)
-> Stream (e a1) first input signal
-> Stream (e a2) second input signal
-> (Stream (e st1), Stream (e st2)) output signals mirroring the

next state(s).

(*) meaning st1 -> st2 -> a1 -> a2 -> (st1,st2) where each argument and result might
be individually wrapped with a context and might also express a partition.

(**) see the documentation for -<- for justification of the type

stateM : (V̇ m
st × V̇ n → V̇ m

st )× Ėm
st → Sn → Smst

stateM (ns, im)(sn) = ns (stm, sn)

where stm = im % ns (stm, sn)

 

%

sn stm
sm

ns im

.state
sn sm≡

ns

im

The state processes generate process networks corresponding to a simple state machine like
in the graph above.

This library exports constructors of type state[1-4][1-4].

stated22
:: MoC e
=> Fun e st1 (Fun e st2 (Fun e a1 (Fun e a2 (Ret e

st1, Ret e st2))))
next state function (*)

-> (Stream (e st1), Stream (e st2)) initial state(s) (**)
-> Stream (e a1) first input signal
-> Stream (e a2) second input signal
-> (Stream (e st1), Stream (e st2)) output signals mirroring the

next state(s).

(*) meaning st1 -> st2 -> a1 -> a2 -> (st1,st2) where each argument and result might
be individually wrapped with a context and might also express a partition.

(**) see the documentation for -<- for justification of the type

statedM : (V̇ m
st × V̇ n → V̇ m

st )× Ėm
st → Sn → Smst

statedM (ns, im)(sn) = stm

where stm = im % ns (stm, sn)

 %sn stm
sm

ns im

.stated
sn sm≡

ns im

The state processes generate process networks corresponding to a simple state machine like
in the graph above. The difference between state22 and stated22 is that the latter outputs
the current state rather than the next one. There exists a variant with 0 input signals, in
which case the process is a signal generator.

This library exports constructors of type stated[0-4][1-4].
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moore22
:: MoC e
=> Fun e st (Fun e a1 (Fun e a2 (Ret e st))) next state function (*)
-> Fun e st (Ret e b1, Ret e b2) output decoder (**)
-> Stream (e st) initial state (***)
-> Stream (e a1) first input signal
-> Stream (e a2) second input signal
-> (Stream (e b1), Stream (e b2)) output signals

(*) meaning st -> a1 -> a2 -> st where each argument and result might be individually
wrapped with a context and might also express a partition.

(**) meaning st -> (b1, b2) where each argument and result might be individually wrapped
with a context and might also express a partition.

(***) see the documentation for -<- for justification of the type

mooreM : (V̇st × V̇ n → V̇st)× (V̇st → V̇ m)× Ėst → Sn → Sm
mooreM (ns, od, im)(sn) = od stm

where stm = im % ns (stm, sn)

 %  sn st
sm

ns im

.moore
sn sm≡

ns im od

The moore processes model Moore state machines.

This library exports constructors of type moore[1-4][1-4].

mealy22
:: MoC e
=> Fun e st (Fun e a1 (Fun e a2 (Ret e st))) next state function (*)
-> Fun e st (Fun e a1 (Fun e a2 (Ret e b1, Ret e b2))) output decoder (**)
-> Stream (e st) initial state (***)
-> Stream (e a1) first input signal
-> Stream (e a2) second input signal
-> (Stream (e b1), Stream (e b2)) output signals

(*) meaning st -> a1 -> a2 -> st where each argument and result might be individually
wrapped with a context and might also express a partition.

(**) meaning st -> a1 -> a2 -> (b1, b2) where each argument and result might be indi-
vidually wrapped with a context and might also express a partition.

(***) see the documentation for -<- for justification of the type

mealyM : (V̇st × V̇ n → V̇st)× (V̇st × V̇ n → V̇ m)× Ėst → Sn → Sm
mealyM (ns, od, im)(sn) = od (stm, sn)

where stm = im % ns (stm, sn)

 %  sn st
sm

ns im

.mealy
sn sm≡

ns im od

The mealy processes model Mealy state machines.

This library exports constructors of type mealy[1-4][1-4].
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4.5.3 Utilities

ctxt22
:: (ctx, ctx) argument contexts (e.g. consumption

rates in SDF)
-> (ctx, ctx) result contexts (e.g. production rates in

SDF)
-> (a1 -> a2 -> (b1, b2)) function on values/partitions of values
-> (ctx, a1 -> (ctx, a2 -> ((ctx, b1),

(ctx, b2))))
context-wrapped form of the previous
function

ctxt : Γ× ([α]n → [β]m)→ (α̇n → β̇m)

Wraps a function with the context needed by some MoCs for their constructors (e.g. rates
in SDF).
This library exports wrappers of type ctxt[1-8][1-4].

warg :: c -> (a -> b) -> (c, a -> b)
Attaches a context parameter to a function argument (e.g consumption rates in SDF). Used
as kernel function in defining e.g. ctxt22.

wres :: p -> b -> (p, b)
Attaches a context parameter to a function’s result (e.g production rates in SDF). Used as
kernel function in defining e.g. ctxt22.

(-*<) :: MoC e =>
Stream (e (Ret e b1, Ret e b2)) -> (Stream (e b1), Stream (e b2))

Utilities for extending the -* atom for dealing with tupled outputs. This library exports
operators of form -*<{1,8}.

4.6 ForSyDe.Atom.MoC.Stream

module ForSyDe.Atom.MoC.Stream (
Stream(NullS, (:-)), , , , , , stream, fromStream, headS, tailS,
lastS, repeatS, takeS, dropS, takeWhileS, (+-+)

) where

This module defines the shallow-embedded Stream datatype and utility functions operating on
it. In ForSyDe a signal is represented as a (partially or totally) ordered sequence of events that
enables processes to communicate and synchronize. The Stream type is but an ordered structure
to encapsulate events as infinite streams.

data Stream e
= NullS terminates a signal
| e (:-) (Stream e) the default constructor appends an

event to the head of the stream
Defines a stream of events, encapsulating them in a structure isomorphic to an infinite list
R. S. Bird, 1987, thus all properties of lists may also be applied to Streams. While, in
combination with lazy evaluation, it is possible to create and simulate infinite signals, we
need to ensure that the first/previous event is always fully evaluated. This can be translated
into the following rule:
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zero-delay feedbacks are forbidden, due to un-evaluated self-referential calls. In a feed-
back loop, there always has to be enough events to ensure the data flow.

This rule imposes that the stream of data is uninterrupted in order to have an evaluatable
kernel every time a new event is produced (i.e. to avoid deadlocks). Thus we can add the
rule:

cleaning of output events is also forbidden. In other words, for each new input at any
instant in time, a process must react with at least one output event.

instance Functor Stream
allows for the mapping of an arbitrary function (a -> b) upon all the events of a (Stream
a).

instance Applicative Stream
enables the Stream to behave like a ZipList

instance Foldable Stream
provides folding functions useful for implementing utilities, such as length.

instance Read a => Read (Stream a)
signal (1 :- 2 :- NullS) is read using the string "{1,2}".

instance Show a => Show (Stream a)
signal (1 :- 2 :- NullS) is represented as {1,2}.

instance Plottable a => Plot (Signal a)
SY signals.

instance Plottable a => Plot (Signal a)
SDF signals.

instance Plottable a => Plot (Signal a)
DE signals.

instance Plottable a => Plot (Signal a)
CT signals.

stream :: [a] -> Stream a
The function signal converts a list into a signal.

fromStream :: Stream a -> [a]
The function fromStream converts a signal into a list.

headS :: Stream a -> a
Returns the head of a signal.

tailS :: Stream e -> Stream e
Returns the tail of a signal

lastS :: Stream p -> p
Returns the last event in a signal.

repeatS :: a -> Stream a
Returns an infinite list containing the same repeated event.

takeS :: (Ord t, Num t) => t -> Stream e -> Stream e
Returns the first n events in a signal.

dropS :: (Ord t, Num t) => t -> Stream e -> Stream e
Drops the first n events in a signal.



Dra
ft

Chapter 4. The ForSyDe-Atom Standard Library 72

takeWhileS :: (a -> Bool) -> Stream a -> Stream a
Returns the first events of a signal which comply to a condition.

(+-+) :: Stream e -> Stream e -> Stream e
Concatenates two signals.

4.7 ForSyDe.Atom.MoC.SY

module ForSyDe.Atom.MoC.SY (
SY(SY, val), Signal, unit2, signal, readSignal, delay, comb22,
reconfig22, constant2, generate2, stated22, state22, moore22,
mealy22, when, when’, is, whenPresent, filter, filter’, fill, hold,
reactAbst2, toDE2, toSDF2, zipx, unzipx, unzipx’

) where

The SY library implements the atoms holding the sematics for the synchronous computation model.
It also provides a set of helpers for properly instantiating process network patterns as process
constructors.

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.

4.7.1 Synchronous (SY) event

According to Lee and Sangiovanni-Vincentelli, 1998, "two events are synchronous if they have the
same tag, and two signals are synchronous if all events in one signal are synchronous to an event
in the second signal and vice-versa. A system is synchronous if every signals in the system is
synchronous to all the other signals in the system."

The synchronous (SY) MoC defines no notion of physical time, its tag system suggesting in fact the
precedence among events. To further demystify its mechanisms, we can formulate the following
proposition:

The SY MoC is abstracting the execution semantics of a system where computation is assumed
to perform instantaneously (with zero delay), at certain synchronization points, when data
is assumed to be available.

Below is a possible behavior in time of the input and the output signals of a SY process, to
illustrate these semantics:

P

(+)

SY.comb

t0

1

t1

2

t2

3

t3

4

t4

5
...

t0

1

t1

2

t2

3

t3

4

t4

5
...

t0

2

t1

4

t2

6

t3

8

t4

10
...
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Implementing the SY tag system is straightforward if we consider the synchronous Signal as an
infinite list. In this case the tags are implicitly defined by the position of events in a signal: te
would correspond with the event at the head of a signal t1 with the following event, etc... The
only explicit parameter passed to a SY event constructor is the value it carries ∈ Ve. As such, we
can state the following particularities:

1. tags are implicit from the position in the Stream, thus they are completely ignored in the
type constructor.

2. the type constructor wraps only a value

3. being a timed MoC, the order between events is total Lee and Sangiovanni-Vincentelli, 1998.

4. from the previous statement we can conclude that there is no need for an execution context
(see section 4.5) and we can ignore the formatting of functions in ForSyDe.Atom.MoC, thus we
can safely assume:

ȧ = a

newtype SY a
= SY
> val :: a

The SY event. It identifies a synchronous signal.

instance Functor SY
Allows for mapping of functions on a SY event.

instance Applicative SY
Allows for lifting functions on a pair of SY events.

instance MoC SY
Implenents the execution and synchronization semantics for the SY MoC through its atoms.

instance Read a => Read (SY a)
Reads the value wrapped

instance Show a => Show (SY a)
Shows the value wrapped

instance Plottable a => Plot (Signal a)
SY signals.

instance type Ret SY b = b
instance type Fun SY a b = a -> b

4.7.2 Aliases & utilities

A set of type synonyms and utilities are provided for convenience. The API type signatures
will feature these aliases to hide the cumbersome construction of atoms and patters as seen in
ForSyDe.Atom.MoC.

type Signal a = Stream (SY a)
Type synonym for a SY signal, i.e. "an ordered stream of SY events"

unit2 :: (a1, a2) -> (Signal a1, Signal a2)
Wraps a (tuple of) value(s) into the equivalent unit signal(s).

Helpers: unit, unit2, unit3, unit4.
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signal :: [a] -> Signal a
Transforms a list of values into a SY signal.

readSignal :: Read a => String -> Signal a
Reads a signal from a string. Like with the read function from Prelude, you must specify
the tipe of the signal.
λ> readSignal "{1,2,3,4,5}" :: Signal Int
{1,2,3,4,5}

4.7.3 SY process constuctors

These SY process constructors are basically specific instantiations of the patterns of atoms defined
in ForSyDe.Atom.MoC. Some are also wrapping functions in an extended behavioural model.

Simple

delay
:: a initial value
-> Signal a input signal
-> Signal a output signal
The delay process "delays" a signal with one event. Instantiates the delay pattern.
λ> let s = signal [1,2,3,4,5]
λ> delay 0 s
{0,1,2,3,4,5}

0

SY.delay

1,2,3,4,5 0,1,2,3,4,5

comb22
:: (a1 -> a2 -> (b1, b2)) function on values
-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) two output signals
comb processes map combinatorial functions on signals and take care of synchronization
between input signals. It instantiates the comb pattern (see comb22).

Constructors: comb[1-4][1-4].
λ> let s1 = signal [1..]
λ> let s2 = signal [1,1,1,1,1]
λ> comb11 (+1) s2
{2,2,2,2,2}
λ> comb22 (\a b-> (a+b,a-b)) s1 s2
({2,3,4,5,6},{0,1,2,3,4})

λ a b→ (a+ b, a− b)

SY.comb

1,2,3,4,5,6,...

1,1,1,1,1

2,3,4,5,6

0,1,2,3,4

reconfig22
:: Signal (a1 -> a2 -> (b1, b2)) signal carrying functions
-> Signal a1 first input signal carrying arguments
-> Signal a2 second input signal carrying arguments
-> (Signal b1, Signal b2) two output signals
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reconfig creates an synchronous adaptive process where the first signal carries functions and
the other carry the arguments. It instantiates the reconfig atom pattern (see reconfig22).

Constructors: reconfig[1-4][1-4].
λ> let sf = signal [(+1),(*2),(+1),(*2),(+1),(*2),(+1)]
λ> let s1 = signal [1..]
λ> reconfig11 sf s1
{2,4,4,8,6,12,8}

SY.reconfig

+1,×2,+1,×2,+1,×2,+1

1, 2, 3, 4, 5, 6, 7, 8, ...
2, 4, 4, 8, 6, 12, 8

constant2
:: (b1, b2) values to be repeated
-> (Signal b1, Signal b2) generated signals
A signal generator which keeps a value constant. It is actually an instantiation of the
stated0X constructor (check stated22).

Constructors: constant[1-4].
λ> let (s1, s2) = constant2 (1,2)
λ> takeS 3 s1
{1,1,1}
λ> takeS 5 s2
{2,2,2,2,2}

(1, 2)

SY.constant

1, 1, 1, ...

2, 2, 2, ...

generate2
:: (b1 -> b2 -> (b1, b2)) function to generate next value
-> (b1, b2) kernel values
-> (Signal b1, Signal b2) generated signals
A signal generator based on a function and a kernel value. It is actually an instantiation of
the stated0X constructor (check stated22).

Constructors: generate[1-4].
λ> let (s1,s2) = generate2 (\a b -> (a+1,b+2)) (1,2)
λ> takeS 5 s1
{1,2,3,4,5}
λ> takeS 7 s2
{2,4,6,8,10,12,14}

λ a b → (a+ 1, b+ 2)

SY.generate

1, 2, 3, 4, 5, ...

2, 4, 6, 8, 10, ...

stated22
:: (b1 -> b2 -> a1 -> a2 -> (b1, b2)) next state function
-> (b1, b2) initial state values
-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) output signals
stated is a state machine without an output decoder. It is an instantiation of the state
MoC constructor (see stated22).

Constructors: stated[1-4][1-4].
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λ> let s1 = signal [1,2,3,4,5]
λ> stated11 (+) 1 s1
{1,2,4,7,11,16}

+ 1

SY.stated

1,2,3,4,5 1,2,4,7,11,16

state22
:: (b1 -> b2 -> a1 -> a2 -> (b1, b2)) next state function
-> (b1, b2) initial state values
-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) output signals
state is a state machine without an output decoder. It is an instantiation of the stated
MoC constructor (see state22).

Constructors: state[1-4][1-4].
λ> let s1 = signal [1,2,3,4,5]
λ> state11 (+) 1 s1
{2,4,7,11,16}

+ 1

SY.state

1,2,3,4,5 2,4,7,11,16

moore22
:: (st -> a1 -> a2 -> st) next state function
-> (st -> (b1, b2)) output decoder
-> st initial state
-> Signal a1
-> Signal a2
-> (Signal b1, Signal b2)

moore processes model Moore state machines. It is an instantiation of the moore MoC con-
structor (see moore22).

Constructors: moore[1-4][1-4].
λ> let s1 = signal [1,2,3,4,5]
λ> moore11 (+) (+1) 1 s1
{2,3,5,8,12,17}

+ +1 1

SY.moore

1,2,3,4,5 2,3,5,8,12,17

mealy22
:: (st -> a1 -> a2 -> st) next state function
-> (st -> a1 -> a2 -> (b1, b2)) outpt decoder
-> st initial state
-> Signal a1
-> Signal a2
-> (Signal b1, Signal b2)

mealy processes model Mealy state machines. It is an instantiation of the mealy MoC con-
structor (see mealy22).

Constructors: mealy[1-4][1-4].
λ> let s1 = signal [1,2,3,4,5]
λ> mealy11 (+) (-) 1 s1
{0,0,1,3,6}
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+ − 1

SY.mealy

1,2,3,4,5 0,0,1,3,6

Predicate behavior

These processes manipulate the behavior of a signal based on predicates on their status.

when
:: Signal (AbstExt Bool) Signal of predicates
-> Signal (AbstExt a) Input signal
-> Signal (AbstExt a) Output signal
This process predicates the existence of values in a signal based on a signal of boolean
values (conditions). It is similar to the when construct in the synchronous language Lustre
Halbwachs et al., 1991, based on which clock calculus can be performed.

OBS: this process assumes that all signals carry absent-extended values, which is appropriate
in describing multi-clock systems. For a version which inputs signals of non-extended values,
check when’.
λ> let s1 = (signal . map Prst) [1,2,3,4,5]
λ> let pred = (signal . map Prst) [False,False,False,True,True]
λ> when pred s1
{⊥,⊥,⊥,4,5}

SY.when

F, F, F, T, T, ...

1, 2, 3, 4, 5, ...
⊥,⊥,⊥, 4, 5, ...

when’
:: Signal Bool Signal of predicates
-> Signal a Input signal
-> Signal (AbstExt a) Output signal
Same as when but inputs signals of non-extended values.
λ> let s1 = signal [1,2,3,4,5]
λ> let pred = signal [False,False,False,True,True]
λ> when’ pred s1
{⊥,⊥,⊥,4,5}

is :: Signal (AbstExt a) -> (a -> Bool) -> Signal (AbstExt Bool)
Simple wrapper for applying a predicate function on a signal of absent-extended events.
λ> let s1 = signal $ map Prst [1,2,3,4,5]
λ> s1 ‘is‘ (>3)
{False,False,False,True,True}

whenPresent :: Signal (AbstExt a1)
-> Signal (AbstExt a2) -> Signal (AbstExt a2)

Same as when but triggering the output events merely based on the presence of the first input
rather than a predicate function.
λ> let s1 = signal $ map Prst [1,2,3,4,5]
λ> let sp = signal [Prst 1, Prst 1, Abst, Prst 1, Abst]
λ> whenPresent sp s1
{1,2,⊥,4,⊥}

filter
:: (a -> Bool) Predicate function
-> Signal (AbstExt a) Input signal
-> Signal (AbstExt a) Output signal
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Filters out values to Abst if they do not fulfill a predicate function.
OBS: this process assumes that all signals carry absent-extended values, which is appropriate
in describing multi-clock systems. For a version which inputs signals of non-extended values,
check filter’.
λ> let s1 = (signal . map Prst) [1,2,3,4,5]
λ> filter (>3) s1
{⊥,⊥,⊥,4,5}

> 3

SY.filter

1, 2, 3, 4, 5, ... ⊥,⊥,⊥, 4, 5, ...

filter’
:: (a -> Bool) Predicate function
-> Signal a Input signal
-> Signal (AbstExt a) Output signal
Same as filter but inputs signals of non-extended values.
λ> let s1 = signal [1,2,3,4,5]
λ> filter’ (>3) s1
{⊥,⊥,⊥,4,5}

fill
:: a Value to fill with
-> Signal (AbstExt a) Input
-> Signal a Output
Fills absent events with a pre-defined value.
λ> let s1 = signal [Abst, Abst, Prst 1, Prst 2, Abst, Prst 3]
λ> fill 0 s1
{0,0,1,2,0,3}

0

SY.fill

⊥,⊥, 1, 2,⊥, 3 0, 0, 1, 2, 0, 3

hold
:: a Value to fill with in case there was no previous value
-> Signal (AbstExt a) Input
-> Signal a Output
Similar to fill, but holds the last non-absent value if there was one. It implements a state
pattern (see state22).
λ> let s1 = signal [Abst, Abst, Prst 1, Prst 2, Abst, Prst 3]
λ> hold 0 s1
{0,0,1,2,2,3}

0

SY.hold

⊥,⊥, 1, 2,⊥, 3 0, 0, 1, 2, 2, 3

reactAbst2
:: (Signal (AbstExt a1) -> Signal

(AbstExt a2) -> Signal b)
process which degrades the absent extension,
e.g. holds present values

-> Signal (AbstExt a1)
-> Signal (AbstExt a2)
-> Signal (AbstExt b) absent-extended signal, properly reacting to

the inputs
Creates a wrapper enabling a reactive behvior to absent-extended signals for processes which
would otherwise degrade the absent-extension (e.g. state machines with ignore22 behavior).
Constructors: reactAbst[1-4].
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λ> let s1 = readSignal "{1,1,1,_,1,_,1}" :: Signal (AbstExt Int)
λ> let proc = stated11 (B.ignore11 (+)) 0
λ> proc s1
{0,1,2,3,3,4,4,5}
λ> reactAbst1 proc s1
{0,1,2,⊥,3,⊥,4}

ignoreB(+) 0

SY.stated

reactAbst

1, 1, 1,⊥, 1,⊥, 1 0, 1, 2,⊥, 3,⊥, 4

4.7.4 Interfaces

toDE2
:: Signal TimeStamp SY signal carrying DE timestamps
-> Signal a first input SY signal
-> Signal b second input SY signal
-> (Signal a, Signal b) two output DE signals

Wraps explicit timestamps to a (set of) SY signal(s), rendering the equivalent synchronized
DE signal(s).

Constructors: toDE, toDE2, toDE3, toDE4.

λ> let s1 = SY.signal [0,3,4,6,9]
λ> let s2 = SY.signal [1,2,3,4,5]
λ> toDE s1 s2
{ 1 @0s, 2 @3s, 3 @4s, 4 @6s, 5 @9s}

SY.toDE

0, 3, 4, 6, 9

1, 2, 3, 4, 5 1 2 3 4 5

0.0 5.0 10.0

toSDF2 :: Signal a -> Signal b -> (Signal a, Signal b)
Transforms a (set of) SY signal(s) into the equivalent SDF signal(s). The only change is the
event consructor. The total order of SY is interpreted as partial order by the next SDF
process downstream.

Constructors: toSDF, toSDF2, toSDF3, toSDF4.

λ> let s = SY.signal [1,2,3,4,5]
λ> toSDF s
{1,2,3,4,5}

SY.toSDF

1,2,3,4,5 1,2,3,4,5

zipx :: Vector (Signal a) -> Signal (Vector a)
Synchronizes all the signals contained by a vector and zips them into one signal of vectors.
It instantiates the zipx skeleton.

λ> let s1 = SY.signal [1,2,3,4,5]
λ> let s2 = SY.signal [11,12,13,14,15]
λ> let v1 = V.vector [s1,s1,s2,s2]
λ> v1
<{1,2,3,4,5},{1,2,3,4,5},{11,12,13,14,15},{11,12,13,14,15}>
λ> zipx v1
{<1,1,11,11>,<2,2,12,12>,<3,3,13,13>,<4,4,14,14>,<5,5,15,15>}
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z
i
p
x

1,2,3,4,5

1,2,3,4,5

11,12,13,14,15

11,12,13,14,15

〈 〈 〈 〈 〈

1 2 3 4 5
1 2 3 4 5
11 12 13 14 15
11 12 13 14 15〉 〉 〉 〉 〉

unzipx :: Integer -> Signal (Vector a) -> Vector (Signal a)
Unzips the vectors carried by a signal into a vector of signals. It instantiates the unzipx
skeleton. To avoid infinite recurrence, the user needs to provide the length of the output
vector.

λ> let v1 = V.vector [1,2,3,4]
λ> let s1 = SY.signal [v1,v1,v1,v1,v1]
λ> s1
{<1,2,3,4>,<1,2,3,4>,<1,2,3,4>,<1,2,3,4>,<1,2,3,4>}
λ> unzipx 4 s1
<{1,1,1,1,1},{2,2,2,2,2},{3,3,3,3,3},{4,4,4,4,4}>

z
i
p
x

1,2,3,4,5

1,2,3,4,5

11,12,13,14,15

11,12,13,14,15

〈 〈 〈 〈 〈

1 2 3 4 5
1 2 3 4 5
11 12 13 14 15
11 12 13 14 15〉 〉 〉 〉 〉

unzipx’ :: Signal (Vector a) -> Vector (Signal a)
Same as unzipx, but "sniffs" the first event to determine the length of the output vector.
Might have unsafe behavior!

λ> let v1 = V.vector [1,2,3,4]
λ> let s1 = SY.signal [v1,v1,v1,v1,v1]
λ> s1
{<1,2,3,4>,<1,2,3,4>,<1,2,3,4>,<1,2,3,4>,<1,2,3,4>}
λ> unzipx’ s1
<{1,1,1,1,1},{2,2,2,2,2},{3,3,3,3,3},{4,4,4,4,4}>

4.8 ForSyDe.Atom.MoC.DE

module ForSyDe.Atom.MoC.DE (
TimeStamp, DE(DE, tag, val), Signal, unit2, infinite, until, signal,
checkSignal, readSignal, delay, delay’, comb22, reconfig22, sync2,
constant2, generate2, stated22, state22, moore22, mealy22, toSY2,
toCT2, zipx, unzipx, unzipx’, embedSY22

) where

The DE library implements the atoms holding the sematics for the discrete event computation
model. It also provides a set of helpers for properly instantiating process network patterns as
process constructors.

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.
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4.8.1 Discrete event (DE)

According to Lee and Sangiovanni-Vincentelli, 1998, "a discrete-event system is a timed system Q
where for all s ∈ Q, the tag sytem is order-isomorphic to a subset of the integers. Order-isomorphic
means simply that there exists an order-preserving bijection between the events in T and a subset
of the integers (or the entire set of integers)."

The discrete event (DE) MoC does suggest the notion of physical time through its tags, also called
timestamps. As the definition above implies, an important property of the DE tag system is that
between any two timestamps tu and tv there is a finite number of possible timestamps. Based on
this we can formulate the folowing specialized definition:

The DE MoC is abstracting the execution semantics of a system where synchronization is dis-
cretized and time-aware, and it is performed whenever a new event occurs.

There are many variants of discrete event simulators, each of them implementing slight variations
of the semantics stated in Lee and Sangiovanni-Vincentelli, 1998. The execution model covered
by the DE implementation of ForSyDe-atom may be described as a simplified "cycle simulator"
with no delta-delay nor superdense time. The signals behave as "latched channels" (similar to
an HDL simulator), and processes react instantaneously to any new event. While the simplicity
of the execution engine is a desired one, more complex behaviors such as zero-time feedback,
non-zero reaction time and communication protocols (e.g. lossy buffers) may be achieved by
composing patterns from the ForSyDe.Atom.MoC and/or ForSyDe.Atom.ExB layers. Nevertheless, the
DE behaviors possible within ForSyDe-Atom are included in the class of conservative simulators
as presented in Fujimoto00 due to the dataflow nature of the evaluation mechanisms. Below you
can see an example of a simple DE process, without behavior extensions:

+

DE.comb

1

1 2 3 4 5

0.0 5.0 10.0

2 3 4 5 6

0.0 5.0 10.0

Below are stated a few particularities of our DE MoC implementation:

1. According to Lee and Sangiovanni-Vincentelli, 1998, our DE MoC is a one-sided system, i.e.
time starts from an absolute 0. While negative time cannot be represented, signals can be
phase-aligned with the help of the -&- atom. All signals need to start from timestamp 0,
and events need to be positioned with their tags in strict ascending order. The checkSignal
utility enforces these rules.

2. tags are explicit and a DE event will construct a type around both a tag and a value. Tags
represent the start time of the event, the end time being implicit from the start time of the
next event. By doing so, we ensure that the time domain is non-disjoint, i.e. a sub-case of
continous time.

3. according to the previous point, events are assumed to persist from their time of arrival
until the next event arrives or, if there is no incoming event, until infinity. This default
behavior can be be interpret signals as being either persistent channels (e.g. latched wires),
or non-blocking buffers of size 1.

4. as a consequence to the previous is that feedback loops will generate an infinite number of
events (strictly preceding each other), since a loop updates the value after a certain delay,
and any input is assumed to go to infinity. Thus we can now fully jutify the definition of
the delay pattern as consisting in a prepend (i.e. generating the new value) and a phase
shift (i.e. advancing time with a positive integer). This is done in order to both preserve
causality and avoid deadlock.
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5. due to the reactive and dataflow natures of the execution system, DE processes are forbidden
to clean up events. Doing so might lead to deadlock wherever any feedback is involved. This
means that a new event is created every time a new event arrives, regardless of what value
it carries. This means that all values are propagated, justifying our system’s conservative
approach Fujimoto00 Atoms themselves do not clean signals, but using interfaces that do
should be treated with extreme special care, as it is considered unsafe and deadlock-prone.

6. due to the conservative approach, and to the fact that MoC atoms are independent syn-
chronization entities, ForSyDe simulators are completely parallelizable, since processes are
self-sufficient and do not depend on a global event queue (as compared to other cycle simu-
lators).

7. any signal from outside needs to be sane (T must be a total order) before being injected
into a ForSyDe process network. Helper functions are equipped with sanity checkers. Inside
a ForSyDe process network, transformations are rate-monotonic, thus output signals are
guaranteed to be sane.

8. since T is a total order, there is no need for an execution context (see section 4.5) and we
can ignore the formatting of functions in ForSyDe.Atom.MoC, thus we can safely assume:

ȧ = a

type TimeStamp = DiffTime
Alias for the type representing discrete time. It is inherently quantizable, the quantum be-
ing a picosecond (10-12 seconds), thus it can be considered order-isomorphic with a set of
integers, i.e. between any two timestamps there is a finite number of timestamps. Moreover,
a timestamp can be easily translated into a rational number representing fractions of a sec-
ond, so the conversion between timestamps (discrete time) and rationals (analog/continuous
time) is straightforward.
This type is used in the explicit tags of the DE MoC (and subsequently the discrete event
evaluation engine for simulating the CT MoC).

data DE a
= DE
> tag :: TimeStamp timestamp
> val :: a the value
The DE event. It identifies a discrete event signal.

instance Functor DE
Allows for mapping of functions on a DE event.

instance Applicative DE
Allows for lifting functions on a pair of DE events.

instance MoC DE
Implenents the execution and synchronization semantics for the DE MoC through its atoms.

instance Eq a => Eq (DE a)

instance Read a => Read (DE a)
Reads the string of type v@t as an event DE t v.

instance Show a => Show (DE a)
Shows the event with tag t and value v as v @t.

instance Plottable a => Plot (Signal a)
DE signals.

instance type Ret DE b = b
instance type Fun DE a b = a -> b
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4.8.2 Aliases & utilities

A set of type synonyms and utilities are provided for convenience. The API type signatures
will feature these aliases to hide the cumbersome construction of atoms and patters as seen in
ForSyDe.Atom.MoC.

type Signal a = Stream (DE a)
Type synonym for a SY signal, i.e. "a signal of SY events"

unit2 :: ((TimeStamp, a1), (TimeStamp, a2))
-> (Signal a1, Signal a2)

Wraps a (tuple of) pair(s) (tag, value) into the equivalent unit signal(s), in this case a
signal with one event with the period tag carrying value.
Helpers: unit and unit[2-4].

infinite :: a -> Signal a
Creates an infinite signal.

until :: TimeStamp -> Signal a -> Signal a
Takes the first part of the signal util a given timestamp. The last event of the resulting
signal is at the given timestamp and carries the previous value. This utility is useful when
plotting a signal, to specify the interval of plotting.

signal :: [(TimeStamp, a)] -> Signal a
Transforms a list of tuples (tag, value) into a DE signal. Checks if it is well-formed.

checkSignal :: Stream (DE a) -> Stream (DE a)
Checks if a signal is well-formed or not, according to the DEMoC interpretation in ForSyDe-Atom.

readSignal :: Read a => String -> Signal a
Reads a signal from a string and checks if it is well-formed. Like with the read function from
Prelude, you must specify the type of the signal.
λ> readSignal "{ 1@0, 2@2, 3@5, 4@7, 5@10 }" :: Signal Int
{ 1 @0s, 2 @2s, 3 @5s, 4 @7s, 5 @10s}
λ> readSignal "{ 1@0, 2@2, 3@5, 4@10, 5@7 }" :: Signal Int
{ 1 @0s, 2 @2s, 3 @5s*** Exception: [MoC.DE] malformed signal
λ> readSignal "{ 1@1, 2@2, 3@5, 4@7, 5@10 }" :: Signal Int
*** Exception: [MoC.DE] signal does not start from global 0

4.8.3 DE process constuctors

The DE process constructors are basically specific instantiations of patterns defined in ForSyDe.Atom.MoC.
Some might also be wrapping functions in an extended behavioural model.

Simple

These are mainly direct instantiations of patterns defined in ForSyDe.Atom.MoC, using DE-specific
utilities.

delay
:: TimeStamp time delay
-> a initial value
-> Signal a input signal
-> Signal a output signal
The delay process "delays" a signal with one event. Instantiates the delay pattern.
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λ> let s = readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: Signal Int
λ> delay 3 0 s
{ 0 @0s, 1 @3s, 2 @5s, 3 @9s, 4 @11s, 5 @12s}

3 0

DE.delay
1 2 3 4 5

0.0 5.0 10.0

0 1 2 3 4 5

0.0 5.0 10.0

delay’
:: Signal a signal "borrowing" the initial event
-> Signal a input signal
-> Signal a output signal

Similar to the previous, but this is the raw instantiation of the delay pattern. It "borrows"
the first event from one signal and appends it at the head of another signal.

λ> let s1 = readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: Signal Int
λ> let s2 = readSignal "{3@0, 4@4, 5@5, 6@8, 7@9}" :: Signal Int
λ> delay’ s1 s2
{ 1 @0s, 3 @2s, 4 @6s, 5 @7s, 6 @10s, 7 @11s}

DE.delay’

1 2 3 4 5

3 4 5 6 7

0.0 5.0 10.0

2 2 4 4 6 8

0.0 5.0 10.0

comb22
:: (a1 -> a2 -> (b1, b2)) function on values
-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) two output signals

comb processes map combinatorial functions on signals and take care of synchronization
between input signals. It instantiates the comb pattern (see comb22).

Constructors: comb[1-4][1-4].

λ> let s1 = infinite 1
λ> let s2 = readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: Signal Int
λ> comb11 (+1) s2
{ 2 @0s, 3 @2s, 4 @6s, 5 @8s, 6 @9s}
λ> comb22 (\a b-> (a+b,a-b)) s1 s2
({ 2 @0s, 3 @2s, 4 @6s, 5 @8s, 6 @9s},{ 0 @0s, -1 @2s, -2 @6s, -3 @8s, -4 @9s})

λ a b→ (a+ b, a− b)

DE.comb

1

3 4 5 6 7

0.0 5.0 10.0

4 5 6 7 8

-2 -3 -4 -5 -6

0.0 5.0 10.0

reconfig22
:: Signal (a1 -> a2 -> (b1, b2)) signal carrying functions
-> Signal a1 first input signal carrying arguments
-> Signal a2 second input signal carrying arguments
-> (Signal b1, Signal b2) two output signals

reconfig creates a DE adaptive process where the first signal carries functions and the other
carry the arguments. It instantiates the reconfig atom pattern (see reconfig22).

Constructors: reconfig[1-4][1-4].

λ> let sf = signal [(0,(+1)),(2,(*2)),(5,(+1)),(7,(*2))]
λ> let s1 = signal [(0,1),(3,2),(5,3),(9,4)]
λ> reconfig11 sf s1
{ 2 @0s, 2 @2s, 4 @3s, 4 @5s, 6 @7s, 8 @9s}
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DE.reconfig

+1 ×2 +1 ×2

1 2 3 4

0.0 5.0 10.0

2 2 4 4 6 8

0.0 5.0 10.0

sync2
:: Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal a1, Signal a2) two output signals
sync synchronizes multiple signals, so that they have the same set of tags, and consequently,
the same number of events. It instantiates the comb atom pattern (see comb22).

Constructors: sync[1-4]

λ> let s1 = readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: Signal Int
λ> let s2 = readSignal "{1@0, 2@5, 3@6, 4@10, 5@12}" :: Signal Int
λ> sync2 s1 s2
({ 1 @0s, 2 @2s, 2 @5s, 3 @6s, 4 @8s, 5 @9s, 5 @10s, 5 @12s},{ 1 @0s, 1 @2s, 2 @5s, 3 @6s, 3

@8s, 3 @9s, 4 @10s, 5 @12s})

DE.sync

1 2 3 4 5

1 2 3 4 5

0.0 5.0 10.0 15.0

1 2 2 3 4 5 5 5

1 1 2 3 3 3 4 5

0.0 5.0 10.0 15.0

constant2
:: (b1, b2) values to be repeated
-> (Signal b1, Signal b2) generated signals
A signal generator which keeps a value constant. As compared with the SY, it just constructs
an infinite signal with constant value (i.e. a signal with one event starting from time 0).

Constructors: constant[1-4].
λ> constant1 2
{ 2 @0s}

2

DE.constant
2

0.0 5.0 10.0

generate2
:: (b1 -> b2 -> (b1, b2)) function to generate next value
-> ((TimeStamp, b1), (TimeStamp,

b2))
kernel values tupled with their generation rate.

-> (Signal b1, Signal b2) generated signals
A signal generator based on a function and a kernel value. It is actually an instantiation of
the stated0X constructor (check stated22).

Constructors: generate[1-4].
λ> let (s1,s2) = generate2 (\a b -> (a+1,b+2)) ((3,1),(1,2))
λ> takeS 5 s1
{ 1 @0s, 2 @3s, 2 @4s, 2 @5s, 3 @6s}
λ> takeS 7 s2
{ 2 @0s, 4 @1s, 6 @2s, 8 @3s, 10 @4s, 12 @5s, 14 @6s}

stated22
:: (b1 -> b2 -> a1 -> a2 -> (b1,

b2))
next state function

-> ((TimeStamp, b1), (TimeStamp,
b2))

initial state values tupled with their initial delay

-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) output signals
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λ a b → (a+ 1, b+ 2) (3, 1), (1, 2)

DE.generate

1 2 2 2 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

1 2 2 2 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

0.0 5.0

stated is a state machine without an output decoder. It is an instantiation of the state
MoC constructor (see stated22).

Constructors: stated[1-4][1-4].

λ> let s = readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: Signal Int
λ> takeS 7 $ stated11 (+) (6,1) s
{ 1 @0s, 2 @6s, 3 @8s, 5 @12s, 7 @14s, 8 @15s, 10 @18s}

+ (6, 1)

DE.stated

1 2 3 4 5

0.0 5.0 10.0 15.0

1 2 3 5 7 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

0.0 5.0 10.0 15.0

state22
:: (b1 -> b2 -> a1 -> a2 -> (b1,

b2))
next state function

-> ((TimeStamp, b1), (TimeStamp,
b2))

initial state values tupled with their initial delay

-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) output signals

state is a state machine without an output decoder, and the state non-transparent. It is an
instantiation of the state MoC constructor (see state22).

Constructors: state[1-4][1-4].

λ> let s = readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: Signal Int
λ> takeS 7 $ state11 (+) (6,1) s
{ 2 @0s, 3 @2s, 5 @6s, 7 @8s, 8 @9s, 10 @12s, 12 @14s}

+ (6, 1)

DE.state

1 2 3 4 5

0.0 5.0 10.0 15.0

2 3 5 7 8 10 12 1313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313

0.0 5.0 10.0 15.0

moore22
:: (st -> a1 -> a2 -> st) next state function
-> (st -> (b1, b2)) output decoder
-> (TimeStamp, st) initial state: tag and value
-> Signal a1
-> Signal a2
-> (Signal b1, Signal b2)

moore processes model Moore state machines. It is an instantiation of the moore MoC con-
structor (see moore22).

Constructors: moore[1-4][1-4]

λ> let s = readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: Signal Int
λ> takeS 7 $ moore11 (+) (+1) (6,1) s
{ 2 @0s, 3 @6s, 4 @8s, 6 @12s, 8 @14s, 9 @15s, 11 @18s}

mealy22
:: (st -> a1 -> a2 -> st) next state function
-> (st -> a1 -> a2 -> (b1, b2)) outpt decoder
-> (TimeStamp, st) initial state: tag and value
-> Signal a1
-> Signal a2
-> (Signal b1, Signal b2)
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+ +1 (6, 1)

DE.moore

1 2 3 4 5

0.0 5.0 10.0 15.0

2 3 4 6 8 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999

0.0 5.0 10.0 15.0

mealy processes model Mealy state machines. It is an instantiation of the mealy MoC con-
structor (see mealy22).

Constructors: mealy[1-4][1-4]

λ> let s = readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: Signal Int
λ> takeS 7 $ mealy11 (+) (-) (6,1) s
{ 0 @0s, -1 @2s, -1 @6s, -1 @8s, -2 @9s, 0 @12s, 2 @14s}

+ − (6, 1)

DE.mealy

1 2 3 4 5

0.0 5.0 10.0 15.0

0 -1 -1 -1 -2 0 2 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

0.0 5.0 10.0 15.0

Interface processes

toSY2
:: Signal a first input DE signal
-> Signal b second input DE signal
-> (Signal TimeStamp, Signal a,

Signal b)
signal carrying timestamps tupled with the two out-
put SY signals

Synchronizes a (set of) DE signal(s) an strips off their explicit tags, outputting the equivalent
SY signal(s), tupled with an SY signal carrying the timestamps for the synchronization points.

Constructors : toSY[1-4].
λ> let s1 = DE.infinite 1
λ> let s2 = DE.readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: DE.Signal Int
λ> toSY2 s1 s2
({0s,2s,6s,8s,9s},{1,1,1,1,1},{1,2,3,4,5})

DE.toSY

1

1 2 3 4 5

0.0 5.0 10.0
0,2,6,8,9

1,1,1,1,1

1,2,3,4,5

toCT2
:: Signal (Time -> a) first input DE signal
-> Signal (Time -> b) second input DE signal
-> (Signal a, Signal b) two output CT signals

Semantic preserving transformation between a (set of) DE signal(s) and the equivalent CT
signals. The DE events must carry a function of Time which will be lifted by providing it with
CT implicit time semantics.

Constructors: toCT[1-4].

zipx :: Vector (Signal a) -> Signal (Vector a)
Synchronizes all the signals contained by a vector and zips them into one signal of vectors.
It instantiates the zipx skeleton.
λ> let s1 = DE.readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: DE.Signal Int
λ> let s2 = DE.readSignal "{1@0, 2@2, 3@4, 4@8, 5@9}" :: DE.Signal Int
λ> let v1 = V.vector [s1,s1,s2,s2]
λ> v1
<{ 1 @0s, 2 @2s, 3 @6s, 4 @8s, 5 @9s},{ 1 @0s, 2 @2s, 3 @6s, 4 @8s, 5 @9s},{ 1 @0s, 2 @2s, 3

@4s, 4 @8s, 5 @9s},{ 1 @0s, 2 @2s, 3 @4s, 4 @8s, 5 @9s}>
λ> zipx v1
{ <1,1,1,1> @0s, <2,2,2,2> @2s, <2,2,3,3> @4s, <3,3,3,3> @6s, <4,4,4,4> @8s, <5,5,5,5> @9s}
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DE.toCT
sin cos sin

0.0 3.0 6.0 9.0

0

1

−1

0 3 6 9

z
i
p
x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0.0 5.0 10.0

〈1, 1, 1, 1〉 〈2, 2, 2, 2〉 〈2, 2, 3, 3〉 〈3, 3, 3, 3〉 〈4, 4, 4, 4〉
0.0 5.0 10.0

unzipx :: Integer -> Signal (Vector a) -> Vector (Signal a)
Unzips the vectors carried by a signal into a vector of signals. It instantiates the unzipx
skeleton. To avoid infinite recurrence, the user needs to provide the length of the output
vector.

λ> let v1 = V.vector [1,2,3,4]
λ> let s1 = DE.signal [(0,v1),(2,v1),(6,v1),(8,v1),(9,v1)]
λ> s1
{ <1,2,3,4> @0s, <1,2,3,4> @2s, <1,2,3,4> @6s, <1,2,3,4> @8s, <1,2,3,4> @9s}
λ> unzipx 4 s1
<{ 1 @0s, 1 @2s, 1 @6s, 1 @8s, 1 @9s},{ 2 @0s, 2 @2s, 2 @6s, 2 @8s, 2 @9s},{ 3 @0s, 3 @2s, 3

@6s, 3 @8s, 3 @9s},{ 4 @0s, 4 @2s, 4 @6s, 4 @8s, 4 @9s}>

u
n
z
i
p
x

〈1, 2, 3, 4〉 〈1, 2, 3, 4〉 〈1, 2, 3, 4〉 〈1, 2, 3, 4〉
0.0 5.0 10.0

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

0.0 5.0 10.0

unzipx’ :: Signal (Vector a) -> Vector (Signal a)
Same as unzipx, but "sniffs" the first event to determine the length of the output vector.
Might have unsafe behavior!

λ> let v1 = V.vector [1,2,3,4]
λ> let s1 = DE.signal [(0,v1),(2,v1),(6,v1),(8,v1),(9,v1)]
λ> s1
{ <1,2,3,4> @0s, <1,2,3,4> @2s, <1,2,3,4> @6s, <1,2,3,4> @8s, <1,2,3,4> @9s}
λ> unzipx’ s1
<{ 1 @0s, 1 @2s, 1 @6s, 1 @8s, 1 @9s},{ 2 @0s, 2 @2s, 2 @6s, 2 @8s, 2 @9s},{ 3 @0s, 3 @2s, 3

@6s, 3 @8s, 3 @9s},{ 4 @0s, 4 @2s, 4 @6s, 4 @8s, 4 @9s}>

Hybrid processes

embedSY22
:: (Signal a1 -> Signal a2 -> (Signal b1, Signal b2)) SY process
-> Signal a1 first input DE signal
-> Signal a2 second input DE signal
-> (Signal b1, Signal b2) two output DE signals

Embeds a SY process inside a DE environment. Internally, it synchronizes the input signals,
translates them to SY, feeds them to a SY process and translates the result back to DE
using the same input tags. Seen from outside, this process behaves like a DE process with
"instantaneous response", even for feedback loops.

Constructors: embedSY[1-4][1-4].

For the following example, see the difference between its output and the one of stated22

λ> let s = readSignal "{1@0, 2@2, 3@6, 4@8, 5@9}" :: DE.Signal Int
λ> embedSY11 (SY.stated11 (+) 1) s
{ 1 @0s, 2 @2s, 4 @6s, 7 @8s, 11 @9s}
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+ 1

SY.stated

embedSY

1 2 3 4 5

0.0 5.0 10.0

1 2 4 7 11

0.0 5.0 10.0

4.9 ForSyDe.Atom.MoC.CT

module ForSyDe.Atom.MoC.CT (
TimeStamp, Time, CT(CT, tag, phase, func), Signal, unit2, infinite,
signal, checkSignal, delay, delay’, comb22, reconfig22, constant2,
infinite2, generate2, stated22, state22, moore22, mealy22, toDE1,
sampDE2, zipx, unzipx, unzipx’

) where

The CT library implements the atoms holding the sematics for the continuous time computation
model. It also provides a set of helpers for properly instantiating process network patterns as
process constructors.

For working with time or timestamps please check the utilities provided by the ForSyDe.Atom.MoC.Time
and ForSyDe.Atom.MoC.TimeStamp modules.

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.

4.9.1 Continuous time (CT) event

According to Lee and Sangiovanni-Vincentelli, 1998, "[regarding metric time] at a minimum, T
is an Abelian group, in addition to being totally ordered. A consequence is that t2 - t1 is itself
a tag ∀ t1, t2 ∈ T. In a slightly more elaborate model of computation, T has a metric. (...) A
continuous-time system is a metric timed system Q where T is a continuum (a closed connected
set)."

The continuous time (CT) MoC defines the closest behavior to what we could call "physical time",
where signals cover the full span of a simulation as "functions of time" rather than "values". As
such, we can state:

The CT MoC is abstracting the execution semantics and describes a system where computation
is performed continuously over a (possibly infinite) span of time.

Below is an illustration of the behavior in time of the input and the output signals of a CT process:

+

CT.comb

0

1

−1

0

1

0

0 3.14 6.28 9.42

1

0

0 3.14 6.28 9.42

Our CT MoC is implemented as an enhanced version of DE with respect to theCTMoC definition,
in the sense that:
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1. tags t are also represented with TimeStamps, thus we can say that changes in a CT signal
happen at discrete times (see below).

2. values are represented as functions over a continuous span of time f(t) rather than just a
value or a series of values. The time domain is represented with rational numbers which,
as compared to floating point numbers, do not suffer from inherent quantisation, being able
to model true continuity, i.e. between any two arbitrary points in time there is an infinite
amount of intermediate moments.

3. The event constructor has also a phase component φ, which is taken into consideration only
when evaluating the event function, i.e. f (t + φ). This enables the modeling of "phase
dispacements" of delay lines without altering the function itself (and thus increasing the
complexity of the un-evaluated function graph). The phase needs to be reset during event
synchronization.

These seemingly minor changes have deep implications in the expressiveness of a FoSyDe CT
system and how we interpret it. Capturing the particularities of this MoC, we can formulate the
following properties:

t = 3
0

1

−1

0

1

−1

0 2 4 6

0

1

−1

0 2 4 6

1. CT signals, due to their formation as streams of tagged events, represent discrete changes in
a continuous function over time (e.g. analog signal). While the functions carried by events
are infinite (have always happened and will always happen), being carried by events in a tag
system suggests that changes occur at discrete times. A CT signal can be represented by
the analog circuit above, where the inputs are continuous signals, but the switch is discrete.
Like in the DE MoC, the absolute time 0 represent the time when the system started to be
observed.

2. the previous property is also proven by the fact that the evaluation engine of ForSyDe-Atom
is inherently discrete, i.e. evaluation is performed whenever a new event occurs, in a dataflow
manner. Allowing infinitely small distances between tags would hinder the advancement of
simulation time.

3. events carry functions and not values. In a lazy evaluation system like Haskell’s, functions
are kept symbolic until evaluation. This means that in a CT system computations are
propagated as function graphs until a result is needed, e.g. a signal is plotted for arbitrary
positions in time. This way intermediate quantization errors are eliminated, and the cost of
higher plot resolution is the cost of evaluating the final results only.

4. needless to say, for each t ∈ T, a signal is able to return (e.g. plot) the exact value v for
that particular t.

5. since itself the CT MoC is just an enhanced DE system, all atom evaluation properties are
inherited from it: feedback loops need to advance time, atoms are forbidden to clean signals,
and the conservative approach makes it ideal for parallel/distributed simulation.

6. since T is a total order, there is no need for an execution context (see section 4.5) and we
can ignore the formatting of functions in ForSyDe.Atom.MoC, thus we can safely assume:

ȧ = a
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type TimeStamp = DiffTime
Alias for the type representing discrete time. It is inherently quantizable, the quantum be-
ing a picosecond (10-12 seconds), thus it can be considered order-isomorphic with a set of
integers, i.e. between any two timestamps there is a finite number of timestamps. Moreover,
a timestamp can be easily translated into a rational number representing fractions of a sec-
ond, so the conversion between timestamps (discrete time) and rationals (analog/continuous
time) is straightforward.

This type is used in the explicit tags of the DE MoC (and subsequently the discrete event
evaluation engine for simulating the CT MoC).

type Time = Rational
Type alias for the type to represent metric (continuous) time. Underneath we use Rational
that is able to represent any t between t1 < t2 ∈ T.

data CT a
= CT
> tag :: TimeStamp start time of event
> phase :: Time phase. Models function delays
> func :: Time -> a function of time

The CT type, identifying a continuous time event and implementing an instance of the MoC
class.

instance Functor CT
Allows for mapping of functions on a CT event.

instance Applicative CT
Allows for lifting functions on a pair of CT events.

instance MoC CT
Implenents the execution and synchronization semantics for the CT MoC through its atoms.

instance Show a => Show (CT a)
A non-ideal instance meant for debug purpose only. For each event it evaluates the function
at the tag time only !

instance Plottable a => Plot (Signal a)
CT signals.

instance type Ret CT b = b
instance type Fun CT a b = a -> b

4.9.2 Aliases & utilities

A set of type synonyms and utilities are provided for convenience. The API type signatures
will feature these aliases to hide the cumbersome construction of atoms and patters as seen in
ForSyDe.Atom.MoC.

type Signal a = Stream (CT a)
Type synonym for a CT signal, i.e. "a signal of CT events"

unit2 :: ((TimeStamp, Time -> a1), (TimeStamp, Time -> a2))
-> (Signal a1, Signal a2)

Wraps a (tuple of) pair(s) (time, function) into the equivalent unit signal(s), i.e. signal(s)
with one event with the period time carrying function.

Helpers: unit and unit[2-4].
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infinite :: (Time -> a) -> Signal a
Creates an infinite signal.

signal :: [(TimeStamp, Time -> a)] -> Signal a
Transforms a list of tuples such as the ones taken by event into a CT signal

checkSignal :: Stream (CT a) -> Stream (CT a)
Checks if a signal is well-formed or not, according to the CTMoC interpretation in ForSyDe-Atom.

4.9.3 CT process constuctors

The CT process constructors are basically specific instantiations of patterns defined in ForSyDe.Atom.MoC.
Some might also be wrapping functions in an extended behavioural model.

In the examples below we have imported and instantiated the functions such as e’ pi’, sin’ and
cos’ from the collection of utilities in ForSyDe.Atom.MoC.Time and ForSyDe.Atom.MoC.TimeStamp.
Also, for the sake of documentation the interactive examples are only dumping the CT signals in
data files using the dumpDat utility defined in ForSyDe.Atom.Utility.Plot, according to the custom
cfg structure. These files can be further plotted by any tool of choice, or using the plotting utilities
provided in the ForSyDe.Atom.Utility.Plot module.
import ForSyDe.Atom.Utility.Plot
import ForSyDe.Atom.MoC.Time as Time
import ForSyDe.Atom.MoC.TimeStamp as TimeStamp
let pi’ = TimeStamp.pi
let exp’ = Time.exp
let sin’ = Time.sin
let cos’ = Time.cos
let cfg = defaultCfg {xmax=10, rate=0.1}

Simple

These are mainly direct instantiations of patterns defined in ForSyDe.Atom.MoC, using DE-specific
utilities.

delay
:: TimeStamp time delay
-> (Time -> a) initial value
-> Signal a input signal
-> Signal a output signal
The delay process "delays" a signal with one event. Instantiates the delay pattern. In the
CT MoC, this process can be interpreted as an ideal "delay line".
λ> let s = infinite (sin’)
λ> let s’ = delay 2 (\_ -> 0) s
λ> dumpDat $ prepare cfg {labels=["delay"]} $ s’
Dumped delay in ./fig
["./fig/delay.dat"]

2 const 0

CT.delay
0

1

−1

0 3.14 6.28 9.42

0

1

−1

0 3.14 6.28 9.42

delay’
:: Signal a signal "borrowing" the initial event
-> Signal a input signal
-> Signal a output signal



Dra
ft

93 4.9. ForSyDe.Atom.MoC.CT

Similar to the previous, but this is the raw instantiation of the delay pattern. It "borrows"
the first event from one signal and appends it at the head of another signal.
λ> let s = infinite (sin’)
λ> let s’ = signal [(0, \_ -> 0), (2, \_ -> 1)]
λ> dumpDat $ prepare cfg {labels=["delayp"]} $ delay’ s’ s
Dumped delayp in ./fig
["./fig/delayp.dat"]

CT.delay’

0

1

−1

0

1

−1

0 3.14 6.28 9.42

0

1

−1

0 3.14 6.28 9.42

comb22
:: (a1 -> a2 -> (b1, b2)) function on values
-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) two output signals
comb processes map combinatorial functions on signals and take care of synchronization
between input signals. It instantiates the comb pattern (see comb22).

Constructors: comb[1-4][1-4].
λ> let s1 = infinite (sin’)
λ> let s2 = signal [(0,\_->0),(pi’,\_->1),(2*pi’,\_->0),(3*pi’,\_->1)]
λ> let o1 = comb11 (+1) s2
λ> let (o2_1, o2_2) = comb22 (\a b-> (a+b,a*b)) s1 s2
λ> dumpDat $ prepare cfg {labels=["comb11"]} o1
Dumped comb11 in ./fig
["./fig/comb11.dat"]
λ> dumpDat $ prepareL cfg {labels=["comb22-1","comb22-2"]} [o2_1, o2_2]
Dumped comb22-1, comb22-2 in ./fig
["./fig/comb22-1.dat","./fig/comb22-2.dat"]

λ a b→ (a+ b, a ∗ b)

CT.comb

0

1

−1

0

1

0

0 3.14 6.28 9.42

0

1

−1

0

1

−1

0 3.14 6.28 9.42

reconfig22
:: Signal (a1 -> a2 -> (b1, b2)) signal carrying functions
-> Signal a1 first input signal carrying arguments
-> Signal a2 second input signal carrying arguments
-> (Signal b1, Signal b2) two output signals
reconfig creates a CT adaptive process where the first signal carries functions and the other
carry the arguments. It instantiates the reconfig atom pattern (see reconfig22).

Constructors: reconfig[1-4][1-4].
λ> let s1 = infinite (sin’)
λ> let sf = signal [(0,\_->(*0)),(pi’,\_->(+1)),(2*pi’,\_->(*0)),(3*pi’,\_->(+1))]
λ> dumpDat $ prepare cfg {labels=["reconfig"]} $ reconfig11 sf s1
Dumped reconfig in ./fig
["./fig/reconfig.dat"]

constant2
:: (b1, b2) values to be repeated
-> (Signal b1, Signal b2) generated signals
A generator for a constant signal. As compared with the constant2, it just constructs an
infinite signal with constant value (i.e. a signal with one event starting from time 0).

Constructors: constant[1-4].
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λ> dumpDat $ prepare cfg {labels=["constant"]} $ constant1 2
Dumped constant in ./fig
["./fig/constant.dat"]

2

CT.constant

4

0

0 3.14 6.28 9.42

infinite2
:: (Time -> b1, Time -> b2) values to be repeated
-> (Signal b1, Signal b2) generated signals
A generator for an infinite signal. Similar to constant2.
Constructors: infinite[1-4].
λ> let (inf1, inf2) = infinite2 (sin’, cos’)
λ> dumpDat $ prepareL cfg {labels=["infinite2-1", "infinite2-2"]} [inf1, inf2]
Dumped infinite2-1, infinite2-2 in ./fig
["./fig/infinite2-1.dat","./fig/infinite2-2.dat"]

sin, cos

CT.infinite

0

1

−1

0

1

−1

0 3.14 6.28 9.42

generate2
:: (b1 -> b2 -> (b1, b2)) function to generate next value
-> ((TimeStamp, Time -> b1), (TimeStamp,

Time -> b2))
kernel values tupled with their genera-
tion rate.

-> (Signal b1, Signal b2) generated signals
A signal generator based on a function and a kernel value. It is actually an instantiation of
the stated0X constructor (check stated22).
Constructors: generate[1-4].
λ> let { osc 0 = 1 ; osc 1 = 0 }
λ> dumpDat $ prepare cfg {labels=["generate"]} $ generate1 osc (pi’, \_->0)
Dumped generate in ./fig
["./fig/generate.dat"]

osc π, const(0)

CT.generate

1

0

0 3.14 6.28 9.42

Another example simulating an RC oscillator:

λ> let vs = 2 -- Vs : supply voltage
λ> let r = 100 -- R : resistance
λ> let c = 0.0005 -- C : capacitance
λ> let vc t = vs * (1 - exp’ (-t / (r * c))) -- Vc(t) : voltage charging through capacitor
λ> let ns v = vs + (-1 * v) -- next state : charging / discharging
λ> let rcOsc = generate1 ns (milisec 500, vc)
λ> dumpDat $ prepare cfg {labels=["rcosc"]} $ rcOsc
Dumped rcosc in ./fig
["./fig/rcosc.dat"]

stated22
:: (b1 -> b2 -> a1 -> a2 -> (b1, b2)) next state function
-> ((TimeStamp, Time -> b1), (TimeStamp,

Time -> b2))
initial state values tupled with their ini-
tial delay

-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) output signals
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ns 500ms, VC

CT.generate 0

2

0

0 1 2 3

stated is a state machine without an output decoder. It is an instantiation of the state
MoC constructor (see stated22).

Constructors: stated[1-4][1-4].

λ> let { osc 0 a = a; osc _ a = 0 }
λ> let s1 = signal [(0,\_->1), (6,\_->0)]
λ> dumpDat $ prepare cfg {labels=["stated"]} $ stated11 osc (1,\_->0) s1
Dumped stated in ./fig
["./fig/stated.dat"]

osc 1, const(0)

CT.stated

1

0

0 5 10

1

0

0 5 10

state22
:: (b1 -> b2 -> a1 -> a2 -> (b1, b2)) next state function
-> ((TimeStamp, Time -> b1), (TimeStamp,

Time -> b2))
initial state values tupled with their ini-
tial delay

-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) output signals

state is a state machine without an output decoder, and the state non-transparent. It is an
instantiation of the state MoC constructor (see state22).

Constructors: state[1-4][1-4].

λ> let { osc 0 a = a; osc _ a = 0 }
λ> let s1 = signal [(0,\_->1), (6,\_->0)]
λ> dumpDat $ prepare cfg {labels=["state"]} $ state11 osc (1,\_->0) s1
Dumped state in ./fig
["./fig/state.dat"]

osc 1, const(0)

CT.state

1

0

0 5 10

1

0

0 5 10

moore22
:: (st -> a1 -> a2 -> st) next state function
-> (st -> (b1, b2)) output decoder
-> (TimeStamp, Time -> st) initial state: tag and value
-> Signal a1
-> Signal a2
-> (Signal b1, Signal b2)

moore processes model Moore state machines. It is an instantiation of the moore MoC con-
structor (see moore22).

Constructors: moore[1-4][1-4].

λ> let { osc 0 a = a; osc _ a = 0 }
λ> let s1 = signal [(0,\_->1), (6,\_->0)]
λ> dumpDat $ prepare cfg {labels=["moore"]} $ moore11 osc (*3) (1,\_->0) s1
Dumped moore in ./fig
["./fig/moore.dat"]
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osc ×3 1, const(0)

CT.moore

1

0

0 5 10

3

0

0 5 10

mealy22
:: (st -> a1 -> a2 -> st) next state function
-> (st -> a1 -> a2 -> (b1, b2)) outpt decoder
-> (TimeStamp, Time -> st) initial state: tag and value
-> Signal a1
-> Signal a2
-> (Signal b1, Signal b2)

mealy processes model Mealy state machines. It is an instantiation of the mealy MoC con-
structor (see mealy22).

Constructors: mealy[1-4][1-4].

λ> let { osc (-1) _ = 1; osc 1 _ = (-1) }
λ> let s1 = infinite sin’
λ> dumpDat $ prepare cfg {labels=["mealy"]} $ mealy11 osc (*) (pi’,\_->1) s1
Dumped mealy in ./fig
["./fig/mealy.dat"]

osc × π, const(1)

CT.mealy

0

1

−1

0 3.14 6.28 9.42

0

1

−1

0 3.14 6.28 9.42

Interfaces

toDE1 :: Signal a -> Signal (Time -> a)
Translates a (set of) CT signal(s) into DE semantics without loss of information. In DE, the
abstract function of time inferred by the CT event loses its abstraction and it is "dropped"
to explicit form, under a lower layer. In other words the implicit time semantics are lost,
the carried value simply becoming an ordinary function.

Constructors: toDE[1-4].

CT.toDE
0

1

−1

0 3 6 9

sin cos sin

0.0 3.0 6.0 9.0

sampDE2
:: Signal t DE timestamp carrier
-> Signal a CT input
-> Signal b CT input
-> (Signal a, Signal b) DE outputs

Synchronizes a (set of) CT signal(s) with a DE carrier which holds the timestamps at which
the CT signal must be sampled, and outputs the respective (set of) DE signal(s).

Constructors: sampDE[1-4].

λ> let s = CT.infinite (fromRational . sin’)
λ> let c = DE.generate1 id (pi’/2, 1)
λ> takeS 6 $ sampDE1 c s
{ 0.0 @0s, 1.0 @1.570796326794s, 1.793238520564752e-12 @3.141592653588s, -1.0 @4.712388980382

s, 0.0 @6.283185307176s, 1.0 @7.85398163397s}

zipx :: Vector (Signal a) -> Signal (Vector a)
Synchronizes all the signals contained by a vector and zips them into one signal of vectors.
It instantiates the zipx skeleton.
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CT.toDE

0

1

−1

0 1.57 3.14 4.71 6.28 7.85

1 1 1 1 1 1

0.0 3.14 6.28

0 1 0 -1 0 1

0.0 3.14 6.28

λ> let s1 = CT.signal [(0,const 1), (2,const 2), (6,const 3)]
λ> let s2 = CT.signal [(0,const 1), (2,const 2), (4,const 3)]
λ> let v1 = V.vector [s1,s1,s2,s2]
λ> zipx v1
{ <1,1,1,1> @0s, <2,2,2,2> @2s, <2,2,3,3> @4s, <3,3,3,3> @6s}

See zipx from the ForSyDe.Atom.MoC.DE library for a comprehensive visual example.

unzipx :: Integer -> Signal (Vector a) -> Vector (Signal a)
Unzips the vectors carried by a signal into a vector of signals. It instantiates the unzipx
skeleton. To avoid infinite recurrence, the user needs to provict the length of the output
vector.

λ> let v1 = V.vector [1,2,3,4]
λ> let s1 = CT.signal [(0,const v1),(2,const v1),(6,const v1)]
λ> unzipx 4 s1
<{ 4 @0s, 4 @2s, 4 @6s},{ 3 @0s, 3 @2s, 3 @6s},{ 2 @0s, 2 @2s, 2 @6s},{ 1 @0s, 1 @2s, 1 @6s}>

See unzipx from the ForSyDe.Atom.MoC.DE library for a comprehensive visual example.

unzipx’ :: Signal (Vector a) -> Vector (Signal a)
Same as unzipx, but "sniffs" the first event to determine the length of the output vector.
Might have unsafe behavior!

λ> let v1 = V.vector [1,2,3,4]
λ> let s1 = CT.signal [(0,const v1),(2,const v1),(6,const v1)]
λ> unzipx’ s1
<{ 4 @0s, 4 @2s, 4 @6s},{ 3 @0s, 3 @2s, 3 @6s},{ 2 @0s, 2 @2s, 2 @6s},{ 1 @0s, 1 @2s, 1 @6s}>

4.10 ForSyDe.Atom.MoC.SDF

module ForSyDe.Atom.MoC.SDF (
SDF(SDF, val), Signal, Prod, Cons, signal, readSignal, delay,
delay’, comb22, reconfig22, constant2, generate2, stated22, state22,
moore22, mealy22, toSY2, zipx, unzipx

) where

The SDF library implements the atoms holding the sematics for the synchronous data flow compu-
tation model. It also provides a set of helpers for properly instantiating process network patterns
as process constructors.

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.
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4.10.1 Synchronous data flow (SDF) event

The synchronous data flow (SDF) MoC is the first untimed MoC implemented by the forsyde-atom
framework. On untimed MoCs, Lee and Sangiovanni-Vincentelli, 1998 states that: "when tags are
partially ordered rather than totally ordered, we say that the system is untimed. Untimed systems
cannot have the same notion of causality as timed systems [see SY]. (...) Processes defined in terms
of constraints on the tags in the signals (...) have a consistent cut rather than simultaneity."
Regarding SDF, it states that "is a special case of Kahn process networks Kahn and MacQueen,
1976. A dataflow process is a Kahn process that is also sequential, where the events on the self-
loop signal denote the firings of the dataflow actor. The firing rules of a dataflow actor are partial
ordering constraints between these events and events on the inputs. (...) Produced/consumed
events are defined in terms of relations with the events in the firing signal. It results that for the
same firing i, ei < eo, as an intuitive sort of causality constraint."

Based on the above insights, we can formulate a simplified definition of the forsyde-atom inter-
pretation of SDF:

The SDF MoC is abstracting the execution semantics of a system where computation is per-
formed according to firing rules where the production and the consumption rates are fixed.

Below is a possible behavior in time of the input and the output signals of a SDF process. Events
sharing the same partial ordering in relation to one firing are overlined:

λ(a, b, c)(d, e) → ((a+ d, c+ e), (b))

SDF.comb

1,2,3,4,5,6,7,8,9,...

1,1,1,1,1,1,1

2,4,5,7,8,10

2,5,8

Implementing the SDF tag system implied a series of engineering decisions which lead to the
following particularities:

1. signals represent FIFO channels, and tags are implicit from their position in the Stream
structure. Internally, SDF signals have exactly the same structure as SY signals, whereas the
partial ordering is imposed by the processes alone.

2. the SDF event constructor wraps only a value.

3. being an untimed MoC, the order between events is partial to the firings of processes. An
SDF atom will fire only when there are enough events to trigger its inputs. Once a firing
occurs, it will take care of partitioning the input or output signals.

4. SDF atoms do require a context: the consumption c and production p rates. Also, the
functions passed as arguments reflect the fact that multiple events are handled during a
firing.

5. the previous statement can be synthesized into the following execution context (see sec-
tion 4.5), which also justifies the SDF implementation of Fun and for Ret:

ȧ = an, where n ∈ N

newtype SDF a
= SDF
> val :: a

The CT type, identifying a discrete time event and implementing an instance of the MoC
class. A discrete event explicitates its tag which is represented as an integer.
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instance Functor SDF
Allows for mapping of functions on a SDF event.

instance Applicative SDF
Allows for lifting functions on a pair of SDF events.

instance Foldable SDF
instance Traversable SDF

instance MoC SDF
Implenents the SDF semantics for the MoC atoms

instance Read a => Read (SDF a)
Reads the value wrapped

instance Show a => Show (SDF a)
Shows the value wrapped

instance Plottable a => Plot (Signal a)
SDF signals.

instance type Ret SDF a = (Prod, [a])
instance type Fun SDF a b = (Cons, [a] -> b)

4.10.2 Aliases & utilities

A set of type synonyms and utilities are provided for convenience. The API type signatures
will feature these aliases to hide the cumbersome construction of atoms and patters as seen in
ForSyDe.Atom.MoC.

type Signal a = Stream (SDF a)
Type synonym for a SY signal, i.e. "a signal of SY events"

type Prod = Int
Type synonym for consumption rate

type Cons = Int
Type synonym for production rate

signal :: [a] -> Signal a
Transforms a list of values into a SDF signal with only one partition, i.e. all events share
the same (initial) tag.

readSignal :: Read a => String -> Signal a
Reads a signal from a string. Like with the read function from Prelude, you must specify
the tipe of the signal.

λ> readSignal "{1,2,3,4,5}" :: Signal Int
{1,2,3,4,5}

These SY process constructors are basically specific instantiations of the patterns of atoms defined
in ForSyDe.Atom.MoC. Some are also wrapping functions in an extended behavioural model.
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Simple

delay
:: [a] list of initial values
-> Signal a input signal
-> Signal a output signal

The delay process "delays" a signal with initial events built from a list. It is an instantiation
of the delay constructor.

λ> let s = signal [1,2,3,4,5]
λ> delay [0,0,0] s
{0,0,0,1,2,3,4,5}

[0, 0, 0]

SDF.delay

1,2,3,4,5 0,0,0,1,2,3,4,5

delay’
:: Signal a signal containing the initial tokens
-> Signal a input signal
-> Signal a output signal

Similar to the previous, but this is the raw instantiation of the delay pattern. It appends
the contents of one signal at the head of another signal.

λ> let s1 = signal [0,0,0]
λ> let s2 = signal [1,2,3,4,5]
λ> delay’ s1 s2
{0,0,0,1,2,3,4,5}

SDF.delay’

1,2,3,4,5

0,0,0
0,0,0,1,2,3,4,5

comb22
:: ((Cons, Cons), (Prod, Prod), [a1] ->

[a2] -> ([b1], [b2]))
function on lists of values, tupled with con-
sumption / production rates

-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) two output signals

comb processes map combinatorial functions on signals and take care of synchronization
between input signals. It instantiates the comb atom pattern (see comb22).

Constructors: comb[1-4][1-4].

λ> let s1 = signal [1..]
λ> let s2 = signal [1,1,1,1,1,1,1]
λ> let f [a,b,c] [d,e] = [a+d, c+e]
λ> comb21 ((3,2),2,f) s1 s2
{2,4,5,7,8,10}

Incorrect usage (not covered by doctest):

λ> comb21 ((3,2),3,f) s1 s2
*** Exception: [MoC.SDF] Wrong production

λ(a, b, c)(d, e) → ((a+ d, c+ e), (b))

SDF.comb

1,2,3,4,5,6,7,8,9,...

1,1,1,1,1,1,1
2,4,5,7,8,10
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reconfig22
:: ((Cons, Cons), (Prod,

Prod))
-> Signal ([a1] -> [a2] ->

([b1], [b2]))
function on lists of values, tupled with consumption /
production rates

-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) two output signals
reconfig creates an SDF adaptive process where the first signal carries functions and the
other carry the arguments. It instantiates the reconfig atom pattern (see reconfig22).
According to our SDF definition, the production and consumption rates need to be fixed, so
they are passed as parameters to the constructor, whereas the first signal carries adaptive
functions only. For the adaptive signal it only makes sense that the consumption rate is
always 1.

Constructors: reconfig[1-4][1-4].
λ> let f1 a = [sum a]
λ> let f2 a = [maximum a]
λ> let sf = signal [f1,f2,f1,f2,f1,f2,f1]
λ> let s1 = signal [1..]
λ> reconfig11 (4,1) sf s1
{10,8,42,16,74,24,106}

SDF.reconfig

Σ,max,Σ,max,Σ,max,Σ

1,2,3,4,5,6,7,8,...
10,8,42,16,74,24,106

constant2
:: ([b1], [b2]) values to be repeated
-> (Signal b1, Signal b2) generated signals
A signal generator which repeats the initial tokens indefinitely. It is actually an instantiation
of the stated0X constructor (check stated22).

Constructors: constant[1-4].
λ> let (s1, s2) = constant2 ([1,2,3],[2,1])
λ> takeS 7 s1
{1,2,3,1,2,3,1}
λ> takeS 5 s2
{2,1,2,1,2}

((1, 2, 3), (2, 1))

SDF.constant

1,2,3,1,2,3,...

2,1,2,1,2,1,...

generate2
:: ((Cons, Cons), (Prod, Prod), [b1]

-> [b2] -> ([b1], [b2]))
function to generate next value, tupled with
consumption / production rates

-> ([b1], [b2]) values of initial tokens
-> (Signal b1, Signal b2) generated signals
A signal generator based on a function and a kernel value. It is actually an instantiation of
the stated0X constructor (check stated22).

Constructors: generate[1-4].
λ> let f a b = ([sum a, sum a],[sum b, sum b, sum b])
λ> let (s1,s2) = generate2 ((2,3),(2,3),f) ([1,1],[2,2,2])
λ> takeS 7 s1
{1,1,2,2,4,4,8}
λ> takeS 8 s2
{2,2,2,6,6,6,18,18}
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λ a b → ((Σa,Σa), (Σb,Σb,Σb)) (1, 1), (2, 2, 2)

SDF.generate

1,1,2,2,4,4,8,...

2,2,2,6,6,6,18,18,...

stated22
:: ((Cons, Cons, Cons, Cons), (Prod, Prod), [b1]

-> [b2] -> [a1] -> [a2] -> ([b1], [b2]))
next state function, tupled with
consumption / production rates

-> ([b1], [b2]) initial state partitions of values
-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) output signals

stated is a state machine without an output decoder. It is an instantiation of the state
MoC constructor (see stated22).

Constructors: stated[1-4][1-4].

λ> let f [a] [b,c] = [a+b+c]
λ> let s = signal [1,2,3,4,5,6,7]
λ> stated11 ((1,2),1,f) [1] s
{1,4,11,22}

λ(a)(b, c) → (a+ b+ c) (1)

SDF.stated

1,2,3,4,5,6,7 4,11,22

state22
:: ((Cons, Cons, Cons, Cons), (Prod, Prod), [b1]

-> [b2] -> [a1] -> [a2] -> ([b1], [b2]))
next state function, tupled with
consumption / production rates

-> ([b1], [b2]) initial partitions of values
-> Signal a1 first input signal
-> Signal a2 second input signal
-> (Signal b1, Signal b2) output signals

state is a state machine without an output decoder. It is an instantiation of the stated
MoC constructor (see state22).

Constructors: state[1-4][1-4].

λ> let f [a] [b,c] = [a+b+c]
λ> let s = signal [1,2,3,4,5,6,7]
λ> state11 ((1,2),1,f) [1] s
{4,11,22}

λ(a)(b, c) → (a+ b+ c) (1)

SDF.state

1,2,3,4,5,6,7 1,4,11,22

moore22
:: ((Cons, Cons, Cons), Prod, [st] ->

[a1] -> [a2] -> [st])
next state function, tupled with consump-
tion / production rates

-> (Cons, (Prod, Prod), [st] -> ([b1],
[b2]))

output decoder, tupled with consumption /
production rates

-> [st] initial state values
-> Signal a1
-> Signal a2
-> (Signal b1, Signal b2)

moore processes model Moore state machines. It is an instantiation of the moore MoC con-
structor (see moore22).

Constructors: moore[1-4][1-4].
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λ> let ns [a] [b,c] = [a+b+c]
λ> let od [a] = [a+1,a*2]
λ> let s = signal [1,2,3,4,5,6,7]
λ> moore11 ((1,2),1,ns) (1,2,od) [1] s
{2,2,5,8,12,22,23,44}

λ(a)(b, c)→ (a+ b+ c) λ(a)→ (a+ 1, a× 2) (1)

SDF.moore

1,2,3,4,5,6,7 2,2,5,8,12,22,23,44

mealy22
:: ((Cons, Cons, Cons), Prod, [st] -> [a1] ->

[a2] -> [st])
next state function, tupled with con-
sumption / production rates

-> ((Cons, Cons, Cons), (Prod, Prod), [st] ->
[a1] -> [a2] -> ([b1], [b2]))

outpt decoder, tupled with consump-
tion / production rates

-> [st] initial state values
-> Signal a1
-> Signal a2
-> (Signal b1, Signal b2)

mealy processes model Mealy state machines. It is an instantiation of the mealy MoC con-
structor (see mealy22).

Constructors: mealy[1-4][1-4].

λ> let ns [a] [b,c] = [a+b+c]
λ> let od [a] [b] = [a+b,a*b]
λ> let s = signal [1,2,3,4,5,6,7]
λ> mealy11 ((1,2),1,ns) ((1,1),2,od) [1] s
{2,1,6,8,14,33,26,88}

λ(a)(b, c)→ (a+ b+ c) λ(a)(b)→ (a+ b, a× b) (1)

SDF.mealy

1,2,3,4,5,6,7 2,1,6,8,14,33,26,88

Interfaces

toSY2 :: Signal a -> Signal b -> (Signal a, Signal b)
Transforms a (set of) SDF signal(s) into the equivalent SY signal(s). The only change is the
event consructor. The partial order of DE is interpreted as SY’s total order, based on the
positioning of events in the signals (e.g. FIFO buffers) at that moment.

Constructors: toSY[1-4].

λ> let s = SDF.signal [1,2,3,4,5]
λ> toSY s
{1,2,3,4,5}

SDF.toSY

1,2,3,4,5 1,2,3,4,5

zipx
:: Vector Cons consumption rates
-> Vector (Signal a) vector of signals
-> Signal (Vector a) signal of vectors

Consumes tokens from a vector of signals and merges them into a signal of vectors, with a
production rate of 1. It instantiates the zipx skeleton.
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λ> let s1 = SDF.signal [1,2,3,4,5]
λ> let s2 = SDF.signal [11,12,13,14,15]
λ> let v1 = V.vector [s1,s1,s2,s2]
λ> let r = V.vector [2,1,2,1]
λ> v1
<{1,2,3,4,5},{1,2,3,4,5},{11,12,13,14,15},{11,12,13,14,15}>
λ> zipx r v1
{<1,2,1,11,12,11>,<3,4,2,13,14,12>}

z
i
p
x

1,2,3,4,5

1,2,3,4,5

11,12,13,14,15

11,12,13,14,15

〈 〈

1 3
2 4
1 2
11 13
12 14
11 12〉 〉

unzipx
:: Vector Prod production rates (in reverse order)
-> Signal (Vector a) signal of vectors
-> Vector (Signal a) vector of signals
Consumes the vectors carried by a signal with a rate of 1, and unzips them into a vector of
signals based on the user provided rates. It instantiates the unzipx skeleton.

OBS: due to the recur pattern contained by unzipx, the vector of production rates needs
to be provided in reverse order (see ForSyDe.Atom.Skeleton.Vector).
λ> let s1 = SDF.signal [1,2,3,4,5]
λ> let s2 = SDF.signal [11,12,13,14,15]
λ> let v1 = V.vector [s1,s1,s2,s2]
λ> let r = V.vector [2,1,2,1]
λ> let sz = zipx r v1
λ> v1
<{1,2,3,4,5},{1,2,3,4,5},{11,12,13,14,15},{11,12,13,14,15}>
λ> sz
{<1,2,1,11,12,11>,<3,4,2,13,14,12>}
λ> unzipx (V.reverse r) sz
<{1,2,3,4},{1,2},{11,12,13,14},{11,12}>

z
i
p
x

1,2,3,4

1,2

11,12,13,14

11,12

〈 〈

1 3
2 4
1 2
11 13
12 14
11 12〉 〉

4.11 ForSyDe.Atom.MoC.Time

module ForSyDe.Atom.MoC.Time (
Time, time, const, e, (*^*), pi, sin, cos, tan, atan, asin,
acos, sqrt, exp, cosh, sinh, tanh, atanh, asinh, acosh, log

) where

Collection of utility functions for working with Time. While the CT MoC describes time as being
a non-disjoint continuum (represented in ForSyDe-Atom with Rational numbers), most of the
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functions here are non-ideal approximations or conversions from floating point equivalents. The
trigonometric functions are imported from the numbers package, with a fixed eps parameter.

These utilities are meant to get started with using the CT MoC, and should be used with caution if
result fidelity is a requirement. In this case the user should find a native Rational implementation
for a particular function.

type Time = Rational
Type alias for the type to represent metric (continuous) time. Underneath we use Rational
that is able to represent any t between t1 < t2 ∈ T.

time :: TimeStamp -> Time
Converts TimeStamp into Time representation.

const :: a -> Time -> a
Returns a constant function.

e :: Time
Euler’s number in Time format. Converted from the Prelude equivalent, which is Floating.

(*^*) :: Time -> Time -> Time
"Power of" function taking Times as arguments. Converts back and forth to Floating, as it
uses the ** operator, so it is prone to conversion errors.

pi :: Time
Time representation of the number π. Rational representation with a precision of 0.000001.

sin :: Time -> Time
Sine of Time. Rational representation with a precision of 0.000001.

cos :: Time -> Time
Cosine of Time. Rational representation with a precision of 0.000001.

tan :: Time -> Time
Tangent of Time. Rational representation with a precision of 0.000001.

atan :: Time -> Time
Arctangent of Time. Rational representation with a precision of 0.000001.

asin :: Time -> Time
Arcsine of Time. Rational representation with a precision of 0.000001.

acos :: Time -> Time
Arccosine of Time. Rational representation with a precision of 0.000001.

sqrt :: Time -> Time
Square root of Time. Rational representation with a precision of 0.000001.

exp :: Time -> Time
Exponent of Time. Rational representation with a precision of 0.000001.

cosh :: Time -> Time
Hyperbolic cosine of Time. Rational representation with a precision of 0.000001.

sinh :: Time -> Time
Hyperbolic sine of Time. Rational representation with a precision of 0.000001.

tanh :: Time -> Time
Hyperbolic tangent of Time. Rational representation with a precision of 0.000001.

atanh :: Time -> Time
Hyperbolic arctangent of Time. Rational representation with a precision of 0.000001.

https://hackage.haskell.org/package/numbers-3000.2.0.1
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asinh :: Time -> Time
Hyperbolic arcsine of Time. Rational representation with a precision of 0.000001.

acosh :: Time -> Time
Hyperbolic arccosine of Time. Rational representation with a precision of 0.000001.

log :: Time -> Time
Natural logarithm of Time. Rational representation with a precision of 0.000001.

4.12 ForSyDe.Atom.MoC.TimeStamp

module ForSyDe.Atom.MoC.TimeStamp (
TimeStamp, picosec, nanosec, microsec, milisec, sec, minutes, hours,
toTime, pi,

) where

This module implements a timestamp data type, based on Data.Time.Clock.

type TimeStamp = DiffTime
Alias for the type representing discrete time. It is inherently quantizable, the quantum be-
ing a picosecond (10-12 seconds), thus it can be considered order-isomorphic with a set of
integers, i.e. between any two timestamps there is a finite number of timestamps. Moreover,
a timestamp can be easily translated into a rational number representing fractions of a sec-
ond, so the conversion between timestamps (discrete time) and rationals (analog/continuous
time) is straightforward.
This type is used in the explicit tags of the DE MoC (and subsequently the discrete event
evaluation engine for simulating the CT MoC).

picosec :: Integer -> TimeStamp
Specifies a timestamp in terms of picoseconds.

nanosec :: Integer -> TimeStamp
Specifies a timestamp in terms of nanoseconds.

microsec :: Integer -> TimeStamp
Specifies a timestamp in terms of microseconds.

milisec :: Integer -> TimeStamp
Specifies a timestamp in terms of miliseconds.

sec :: Integer -> TimeStamp
Specifies a timestamp in terms of seconds.

minutes :: Integer -> TimeStamp
Specifies a timestamp in terms of minutes.

hours :: Integer -> TimeStamp
Specifies a timestamp in terms of hours.

toTime :: TimeStamp -> Rational
Converts a timestamp to a rational number, used for describing continuous time.

pi :: TimeStamp
TimeStamp representation of the number π. Converted from the Prelude equivalent, which is
Floating.
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4.13 ForSyDe.Atom.Skeleton

module ForSyDe.Atom.Skeleton (
Skeleton((=.=), (=*=), (=\=), (=<<=), first, last), farm22, reduce,
reducei, pipe, pipe2

) where

This module exports a type class with the interfaces for the Skeleton layer atoms. It does NOT
export any implementation of atoms not any constructor as composition of atoms.

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.

4.13.1 Atoms

class Functor c => Skeleton c where
Class containing all the Skeleton layer atoms.

This class is instantiated by a set of categorical types, i.e. types which describe an inherent
potential for being evaluated in parallel. Skeletons are patterns from this layer. When skele-
tons take as arguments entities from the MoC layer (i.e. processes), the results themselves
are parallel process networks which describe systems with an inherent potential to be im-
plemented on parallel platforms. All skeletons can be described as composition of the three
atoms below (=«= being just a specific instantiation of =\=). This possible due to an existing
theorem in the categorical type theory, also called the Bird-Merteens formalism R. Bird and
Moor, 1997:

factorization A function on a categorical type is an algorithmic skeleton (i.e. catamor-
phism) iff it can be represented in a factorized form, i.e. as a map composed with a
reduce.

Consequently, most of the skeletons for the implemented categorical types are described in
their factorized form, taking as arguments either:

• type constructors or functions derived from type constructors

• processes, i.e. MoC layer entities

Most of the ground-work on algorithmic skeletons on which this module is founded has been
laid in R. Bird and Moor, 1997, Skillicorn, 1994 and it founds many of the frameworks
collected in Fischer, Gorlatch, and Bischof, 2003.

Methods

(=.=) :: (a -> b) -> c a -> c b
Atom which maps a function on each element of a structure (i.e. categorical type),
defined as:

2 : (α → β) → S(α) → S(β)
=.= together with =*= form the map pattern.
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(=*=) :: c (a -> b) -> c a -> c b
Atom which applies the functions contained by as structure (i.e. categorical type), on
the elements of another structure, defined as:

3 : C(α → β) → C(α) → C(β)
=.= together with =*= form the map pattern.

(=\=) :: (a -> a -> a) -> c a -> a
Atom which reduces a structure to an element based on an associative function, defined
as:

4 : (α× α→ α)→ C(α)→ α

(=«=)
Skeleton which pipes an element through all the functions contained by a structure.
N.B.: this is not an atom. It has an implicit definition which might be augmented by
instances of this class to include edge cases.

1 : C(α→ α)× α→ α

1 = (◦)4
As the composition operation is not associative, we cannot treat pipe as a true re-
duction. Alas, it can still be exploited in parallel since it exposes another type of
parallelism: time parallelism.

first :: c a -> a
Returns the first element in a structure.N.B.: this is not an atom. It has an implicit
definition which might be replaced by instances of this class with a more efficient
implementation.

firstS : C(α) → α

firstS = (λ a b→ a)4

last :: c a -> a
Returns the last element in a structure.N.B.: this is not an atom. It has an implicit
definition which might be replaced by instances of this class with a more efficient
implementation.

lastS : C(α) → α

lastS = (λ a b→ b)4

instance Skeleton Vector
Ensures that Vector is a structure associated with the Skeleton Layer.

4.13.2 Skeleton constructors

Patterns of in the skeleton layer are provided, like all other patterns in ForSyDe-Atom, as con-
structors. If the layer below this one is the MoC layer, i.e. the functions taken as arguments are
processes, then these skeletons can be regarded as process network constructors, as the structures
created are process networks with inherent potential for parallel implementation.

farm22 :: Skeleton c =>
(a1 -> a2 -> (b1, b2)) -> c a1 -> c a2 -> (c b1, c b2)

farm maps a function on a vector. It is the embodiment of the map homomorphism, and its
naming is inspired from the pattern predominant in HPC. Indeed, if we consider the layer
below as being the MoC layer (i.e. the passed functions are processes), the resulting structure
could be regarded as a "farm of data-parallel processes".

Constructors: farm[1-8][1-4].

0 : (V n → V m) → Cn → Cm

f 0 (c1, c2, ...cn) = f 2 c1 3 c2 3 ...3 cn/
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2

3

3 /

· · · · · ·
≡ 0

f

f

reduce
:: Skeleton c
=> (a -> a -> a) associative function (*)
-> c a structure
-> a reduced element

Infix name for the =\= atom operator.

(*) if the operation is not associative then the network can be treated like a pipeline.

reducei
:: Skeleton c
=> (a -> a -> a) associative function (*)
-> a initial element of structure
-> c a structure
-> a reduced element

reducei is special case of reduce where an initial element is specified outside the reduced
vector. It is implemented as a pipe with switched arguments, and the reduction function is
constrained to be associative. It is semantically equivalent to the pattern depicted below.

(*) if the operation is not associative then the network is semantically equivalent to pipe1
(see pipe2).

reduceiS : (α× α→ α)→ α→ C(α)→ α

reduceiS f e 〈c〉 = f 0 〈c〉1 e

4

〈c〉

e

f

pipe
:: Skeleton c
=> c (a -> a) vector of functions
-> a kernel element
-> a result

Infix name for the =«= skeleton operator.

pipe2 :: Skeleton c =>
(a1 -> a2 -> a -> a) -> c a1 -> c a2 -> a -> a

The pipe constructors are a more generic form of the =«= (pipe) skeleton apt for successive
partial application and create more robust parameterizable pipeline networks.

Constructors: comb[1-8].

pipeS : (βn → α→ α) → C(βn) → α→ α

pipeS f 〈c〉n e = f 0 〈c〉n 1 e

0

1

〈c〉n

e

f
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4.14 ForSyDe.Atom.Skeleton.Vector

module ForSyDe.Atom.Skeleton.Vector (
Vector(Null, (:>)), null, unit, (<++>), vector, fromVector, indexes,
isNull, (<:), farm22, reduce, prefix, suffix, pipe, (=/=), recur,
cascade2, mesh2, length, index, fanout, fanoutn, generate, iterate,
first, last, inits, tails, init, tail, concat, reverse, group,
shiftr, shiftl, rotr, rotl, take, drop, takeWhile, filterIdx, odds,
evens, stride, get, (<@), (<@!), gather1, (<@>), replace, scatter,
bitrev, duals, unduals, zipx, unzipx

) where

This module defines the data type Vector as a categorical type, and implements the atoms for
the Skeleton class. Algorithmic skeletons for Vector are mostly described in their factorized form,
which ensures that they are catamorphisms (see the factorization theorem). Where efficiency or
practicality is a concern, some skeletons are implemented as recurrences. One can still prove that
they are catamorphisms through alternative theorems (see Skillicorn, 1994).

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.

4.14.1 Vector data type

data Vector a
= Null Null element. Terminates a vector.
| a (:>) (Vector a) appends an element at the head of a vector.
The Vector, or at least its interpretation, is the exact equivalent of an infinite list, as defined
in R. Bird and Moor, 1997. Its name though is borrowed from Reekie, 1995, since it is more
suggestive in the context of process networks.
According to R. Bird and Moor, 1997, Vector should be implemented as following:
data Vector a = Null −− null element

| Unit a −− singleton vector
| Vector a <++> Vector a −− concatenate two vectors

This construction suggests the possibility of splitting a Vector into multiple parts and eval-
uating it in parallel. Due to reasons of efficiency, and to ensure that the structure is flat
and homogeneous, Vector is implemented using the same constructors as an infinite list like
in R. S. Bird, 1987 (see below). When defining skeletons of vectors we will not use the
real constructors though, but the theoretical ones defined above and provided as functions
. This way we align ForSyDe-Atom’s Vector type with the categorical type theory and its
theorems.
Another particularity of Vector is that it instantiates the reduction atom =\= as a right
fold, as it is the most efficient implementation in the context of lazy evaluation. As a
consequence reduction is performed from right to left . This is noticeable especially in the
case of pipeline-based skeletons (where pipe itself is a reduction with the right-associative
composition operator .) is performed from right to left, which comes in natural when
considering the order of function composition. Thus for reduce-based skeletons (e.g. prefix,
suffix, recur, cascade, mesh) the result vectors shall be read from end to beginning.

ForSyDe-Atom-Skeleton.html#factorization
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instance Functor Vector
Provides an implementation for =.=.

instance Applicative Vector
Provides an implementation for =*=.

instance Foldable Vector
Provides an implementation for =\=.

instance Skeleton Vector
Ensures that Vector is a structure associated with the Skeleton Layer.

instance Eq a => Eq (Vector a)

instance Read a => Read (Vector a)
The vector 1 :> 2 :> Null is read using the string "<1,2>".

instance Show a => Show (Vector a)
The vector 1 :> 2 :> Null is represented as <1,2>.

instance Plottable a => Plottable (Vector a)
Vectors of plottable types

instance Plottable a => Plot (Vector a)
vectors of coordinates

4.14.2 "Constructors"

Theoretical constructors for the Vector type, used in the definition of skeletons as catamorphisms.

null :: Vector a
Constructs a null vector.
λ> null
<>

unit :: a -> Vector a
Constructs a singleton vector.
λ> unit 1
<1>

(<++>) :: Vector a -> Vector a -> Vector a
Constructs a vector by appending two existing vectors.
λ> unit 1 <++> unit 2
<1,2>

4.14.3 Utilities

vector :: [a] -> Vector a
Converts a list to a vector.

fromVector :: Vector a -> [a]
Converts a vector to a list.

indexes :: Vector Integer
Creates the infinite vector:
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<1,2,3,4,...>

Used mainly for operation on indexes.

isNull :: Vector a -> Bool
Returns True if the argument is a null vector.

(<:) :: Vector a -> a -> Vector a
Appends an element at the end of a vector.

4.14.4 Skeletons

Algorithmic skeletons on vectors are mainly presented in terms of compositions of the atoms
associated with the Skeleton Layer. When defining them, we use the following operators:

〈〉 : α→ V(α) (1)

++ : V(α)→ V(α)→ V(α) (2)

v[n] : V(α)× Int→ α (3)

v[2..] : V(α)× V(Int)→ V(α) (4)

∞ : α→ V(α) (5)

where:

• (1) is the unit constructor, constructing a singleton vector.

• (2) is the <++> constructor, concatenating two vectors.

• (3) is the <@!> selector. The subscript notation is used to denote element at position n in a
vector.

• (4) suggests an arbitrary selector which returns a vector with another one’s elements, based
on some indices. The shown example is an alternative notation for the tail skeleton.

Functional networks

This sub-category denotes skeletons (patterns) which are take functions as arguments. If the
functions are MoC layer entities, i.e. processes, then these patterns are capable of constructing
parallel process networks. Using the applicative mechanism, the designer has a high degree of
freedom when customizing process networks through systematic partial application, rendering
numerous possible usages for the same pattern. To avoid over-encumbering the figures, they
depict small test cases, which might not expose the full potential of the constructors.

see the naming convention rules on how to interpret, use and develop your own constructors.

farm22
:: (a1 -> a2 -> (b1, b2)) function (e.g. process)
-> Vector a1 first input vector
-> Vector a2 second input vector
-> (Vector b1, Vector b2) two output vectors

farm is simply the Vector instance of the skeletom farm pattern (see farm22). If the function
taken as argument is a process, then it creates a farm network of data parallel processes.

Constructors: farm[1-4][1-4].

ForSyDe-Atom.html#naming_conv
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λ> let v1 = vector [1,2,3,4,5]
λ> S.farm21 (+) v1 v1
<2,4,6,8,10>
λ> let s1 = SY.signal [1,2,3,4,5]
λ> let v2 = vector [s1,s1,s1]
λ> S.farm11 (comb11 (+1)) v2
<{2,3,4,5,6},{2,3,4,5,6},{2,3,4,5,6}>
λ> S.farm21 (\x -> comb11 (+x)) v1 v2
<{2,3,4,5,6},{3,4,5,6,7},{4,5,6,7,8}>

farmS : (αm → βn) → 〈α〉m → 〈β〉n
farmS : 0

+x

SY.comb

farm

〈s〉

〈1, 2, 3, 4, 5〉
 

1,2,3,4,5

 

1,2,3,4,5

 

1,2,3,4,5

2,3,4,5,6

3,4,5,6,7

4,5,6,7,8

+1

+2

+3

reduce :: (a -> a -> a) -> Vector a -> a
As the name suggests, it reduces a vector to an element based on an associative function. If
the function is not associative, it can be treated like a pipeline.
Vector instantiates the skeletons for both reduce and reducei.
λ> let v1 = vector [1,2,3,4,5]
λ> S.reduce (+) v1
15
λ> let s1 = SY.signal [1,2,3,4,5]
λ> let s2 = SY.signal [10,10,10,10,10]
λ> let v2 = vector [s1,s1,s1]
λ> S.reduce (comb21 (+)) v2
{3,6,9,12,15}
λ> S.reducei (comb21 (+)) s2 v2
{13,16,19,22,25}

+

SY.comb

reducei

〈s〉
s

10,10,10,10,10

 

1,2,3,4,5

 

1,2,3,4,5

 

1,2,3,4,5 13,16,19,22,25

+

+

+

prefix :: (b -> b -> b) -> Vector b -> Vector b
prefix peforms the parallel prefix operation on a vector. Equivalent process networks are
constructed if processes are passed as arguments.
Similar to reduce and reducei, two versions prefix and prefixi are provided.
λ> let v1 = vector [1,2,3,4,5]
λ> prefix (+) v1
<15,14,12,9,5>
λ> let s1 = SY.signal [1,2,3,4,5]
λ> let s2 = SY.signal [10,10,10,10,10]
λ> let v2 = vector [s1,s1,s1]
λ> prefix (comb21 (+)) v2
<{3,6,9,12,15},{2,4,6,8,10},{1,2,3,4,5}>
λ> prefixi (comb21 (+)) s2 v2
<{13,16,19,22,25},{12,14,16,18,20},{11,12,13,14,15}>

prefixS : (α× α→ α)→ 〈α〉 → 〈α〉
prefixS f 〈a〉 = (f4)0 (tailsS〈a〉)

+

SY.comb

prefix

〈s〉

1,2,3,4,5

 

1,2,3,4,5

 

1,2,3,4,5

1,2,3,4,5

2,4,6,8,10

3,6,9,12,15

+

+
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+

SY.comb

prefixi

〈s〉
s

10,10,10,10,10

 

1,2,3,4,5

 

1,2,3,4,5

 

1,2,3,4,5

11,12,13,14,15

12,14,16,18,20

13,16,19,22,25

+

+

+

suffix :: (b -> b -> b) -> Vector b -> Vector b
suffix peforms the parallel suffix operation on a vector. Equivalent process networks are
constructed if processes are passed as arguments.
Similar to reduce and reducei, two versions suffix and suffixi are provided.
λ> let v1 = vector [1,2,3,4,5]
λ> suffix (+) v1
<1,3,6,10,15>
λ> let s1 = SY.signal [1,2,3,4,5]
λ> let s2 = SY.signal [10,10,10,10,10]
λ> let v2 = vector [s1,s1,s1]
λ> suffix (comb21 (+)) v2
<{1,2,3,4,5},{2,4,6,8,10},{3,6,9,12,15}>
λ> suffixi (comb21 (+)) s2 v2
<{11,12,13,14,15},{12,14,16,18,20},{13,16,19,22,25}>

suffixS : (α× α→ α)→ 〈α〉 → 〈α〉
suffixS f 〈a〉 = (f4)0 (initsS〈a〉)

+

SY.comb

suffix

〈s〉

1,2,3,4,5

 

1,2,3,4,5

 

1,2,3,4,5

1,2,3,4,5

2,4,6,8,10

3,6,9,12,15

+

+

+

SY.comb

suffixi

〈s〉
s

10,10,10,10,10

 

1,2,3,4,5

 

1,2,3,4,5

 

1,2,3,4,5

11,12,13,14,15

12,14,16,18,20

13,16,19,22,25

+

+

+

pipe
:: Vector (a -> a) vector of functions
-> a input
-> a output
pipe creates a pipeline of functions from a vector. pipe simply instantiates the =«= atom
whereas pipeX instantiate their omologi from the ForSyDe.Atom.Skeleton module (see pipe2).
OBS: the pipelining is done in the order dictated by the function composition operator:
from right to left.
Constructors: pipe[1-4].
λ> let v1 = vector [(+1),(+1),(+1)]
λ> S.pipe v1 1
4
λ> let s1 = SY.signal [1,2,3,4]
λ> let v2 = vector [1,2,3,4]
λ> S.pipe1 (\x -> comb11 (+x)) v2 s1
{11,12,13,14}

+x

SY.comb

pipe

s

〈1, 2, 3, 4〉
 

 

 

 

1,2,3,4

11,12,13,14
+1

+2

+3

+4
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(=/=) :: Vector (a -> a) -> a -> Vector a
Infix operator for recur.

recur
:: Vector (a -> a) vector of functions
-> a input
-> Vector a output

recur creates a systolic array from a vector of functions. Just like pipe and pipeX, there
exists a raw recur version with an infix operator =/=, and the enhanced recurX which is
meant for systematic partial application of a function on an arbitrary number of vectors
until the desired vector of functions is obtained.

Constructors: (=/=), recur, recuri, recur[1-4][1-4].

λ> let v1 = vector [(+1),(+1),(+1)]
λ> recur v1 1
<4,3,2>
λ> recuri v1 1
<4,3,2,1>
λ> let s1 = SY.signal [1,2,3,4]
λ> let v2 = vector [1,2,3,4]
λ> recur1 (\x -> comb11 (+x)) v2 s1
<{11,12,13,14},{10,11,12,13},{8,9,10,11},{5,6,7,8}>

5 : 〈α→ α〉 → α→ 〈α〉
〈f〉 5 i = (1i)0 (tailsS〈f〉)

+x

SY.comb

recur

s

〈1, 2, 3, 4〉

1,2,3,4

 

 

 

 

11,12,13,14

10,11,12,13

8,9,10,11

5,6,7,8
+4

+3

+2

+1

cascade2
:: (a2 -> a1 -> a -> a -> a) function41 which needs to be applied to function21
-> Vector (Vector a2) fills in the first argument in the function above
-> Vector (Vector a1) fills in the second argument in the function above
-> Vector a first input vector (e.g. of signals)
-> Vector a second input vector (e.g. of signals)
-> Vector a output

cascade creates a "cascading mesh" as a result of piping a vector into a vector of recur arrays.

Constructors: cascade, cascade[1-4].

λ> let v1 = vector [1,2,3,4]
λ> cascade (+) v1 v1
<238,119,49,14>
λ> let s1 = SY.signal [1,2,3,4]
λ> let vs = vector [s1, s1, s1]
λ> cascade (comb21 (+)) vs vs
<{20,40,60,80},{10,20,30,40},{4,8,12,16}>
λ> let vv = vector [vector [1,-1,1], vector [-1,1,-1], vector [1,-1,1] ]
λ> cascade1 (\x -> comb21 (\y z-> x*(y+z))) vv vs vs
<{16,32,48,64},{8,16,24,32},{-2,-4,-6,-8}>

cascadeS : (α→ α→ α) → 〈α〉 → 〈α〉 → 〈α〉
cascadeS p 〈s〉1 〈s〉2 = scanfS 0 〈s〉2 1 〈s〉1

where scanfS s2 〈s〉1 = p0 〈s〉1 5 s2
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x× (y + z)

SY.comb

recur

〈s〉
〈s〉

〈〈1,−1, 1〉, ...〉

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

 

 

 

 

 

 

 

 

 
-2,-4,-6,-8

8,16,24,32

16,32,48,64

1(y + z)

−1(y + z)

1(y + z)

−1(y + z)

1(y + z)

−1(y + z)

1(y + z)

−1(y + z)

1(y + z)

mesh2
:: (a2 -> a1 -> a -> a -> a) function41 which needs to be applied to function21
-> Vector (Vector a2) fills in the first argument in the function above
-> Vector (Vector a1) fills in the second argument in the function above
-> Vector a first input vector (e.g. of signals)
-> Vector a second input vector (e.g. of signals)
-> Vector (Vector a) output, a 2D vector

mesh creates a 2D systolic array as a result of piping a vector into a vector of 1D systolic
arrays.

Constructors: mesh, mesh[1-4].

λ> let v1 = vector [1,2,3,4]
λ> mesh (+) v1 v1
<<238,119,49,14>,<119,70,35,13>,<49,35,22,11>,<14,13,11,8>>
λ> let s1 = SY.signal [1,2,3,4]
λ> let vs = vector [s1, s1, s1]
λ> mesh (comb21 (+)) vs vs
<<{20,40,60,80},{10,20,30,40},{4,8,12,16}>,<{10,20,30,40},{6,12,18,24},{3,6,9,12}>,<{4,8,12,16},

{3,6,9,12},{2,4,6,8}>>
λ> let vv = vector [vector [1,-1,1], vector [-1,1,-1], vector [1,-1,1]]
λ> mesh1 (\x -> comb21 (\y z-> x*(y+z))) vv vs vs
<<{16,32,48,64},{8,16,24,32},{-2,-4,-6,-8}>,<{8,16,24,32},{-6,-12,-18,-24},{-3,-6,-9,-12}>,

<{-2,-4,-6,-8},{-3,-6,-9,-12},{2,4,6,8}>>

meshS : (α→ α→ α) → 〈α〉 → 〈α〉 → 〈〈α〉〉
meshS p 〈s〉1 〈s〉2 = scanfS 0 〈s〉2 5 〈s〉1

where scanfS s2 〈s〉1 = p0 〈s〉1 5 s2

x× (y + z)

SY.comb

recur

〈s〉
〈s〉

〈〈1,−1, 1〉, ...〉

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

 

 

 

 

 

 

 

 

 

2,4,6,8

-3,-6,-9,-12

-2,-4,-6,-8

-3,-6,-9,-12

-6,-12,-18,-24

8,16,24,32

-2,-4,-6,-8

8,16,24,32

16,32,48,64

1(y + z)

−1(y + z)

1(y + z)

−1(y + z)

1(y + z)

−1(y + z)

1(y + z)

−1(y + z)

1(y + z)

Queries

Queries return various information about a vector. They are also built as skeletons.
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length :: Num p => Vector a -> p
returns the number of elements in a value.

λ> length $ vector [1,2,3,4,5]
5

lengthS : 〈α〉 → Int

lengthS = (+4) ◦ (10)

index :: Vector a2 -> Vector Integer
returns a vector with the indexes from another vector.

λ> index $ vector [1,1,1,1,1,1,1]
<1,2,3,4,5,6,7>

Generators

Generators are specific applications of the prefix or suffix skeletons.

fanout :: t -> Vector t
fanout repeats an element. As a process network it distributes the same value or signal to all
the connected processes down the line. Depending on the target platform and the refinement
decisions involved, it may be interpreted in the following implementations:

• global or shared memory in case of a massively parallel platform (e.g. GPU)

• a (static) memory or cache location in memory-driven architectures (e.g. CPU)

• a fanout in case of a HDL system

• a broadcast in case of a distributed system

fanoutn :: (Num t, Ord t) => t -> a -> Vector a
fanoutn is the same as fanout, but the length of the result is also provided.

λ> fanoutn 5 1
<1,1,1,1,1>

generate :: (Num t, Ord t) => t -> (a -> a) -> a -> Vector a
generate creates a vector based on a kernel function. It is just a restricted version of recur.

λ> generate 5 (+1) 1
<6,5,4,3,2>

generateS : Int → (α→ α) → α→ 〈α〉
generateS n f i = 〈f〉×n 5 i

iterate :: (Num t, Ord t) => t -> (a -> a) -> a -> Vector a
iterate is a version of generate which keeps the initial element as well. It is a restricted
version of recuri.

λ> iterate 5 (+1) 1
<5,4,3,2,1>
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Permutators

Permutators perform operations on the very structure of vectors, and make heavy use of the vector
constructors.

first :: Vector a -> a
Instance of first

λ> S.first $ vector [1,2,3,4,5]
1

last :: Vector a -> a
Instance of last

λ> S.last $ vector [1,2,3,4,5]
5

inits :: Vector a -> Vector (Vector a)
creates a vector of all the initial segments in a vector.
λ> inits $ vector [1,2,3,4,5]
<<1>,<1,2>,<1,2,3>,<1,2,3,4>,<1,2,3,4,5>>

initsS : 〈α〉 → 〈〈α〉〉
initsS n = (sel4) ◦ (〈〈〉〉0)

where sel x y = x++ ((x[L]++)0 y)

i
n
i
t
s

tails :: Vector a -> Vector (Vector a)
creates a vector of all the final segments in a vector.
λ> tails $ vector [1,2,3,4,5]
<<1,2,3,4,5>,<2,3,4,5>,<3,4,5>,<4,5>,<5>>

tailsS : 〈α〉 → 〈〈α〉〉
tailsS n = (sel4) ◦ (〈〈〉〉0)

where sel x y = ((++y[1])0 x) ++ y

t
a
i
l
s

init :: Vector a -> Vector a
Returns the initial segment of a vector.
λ> init $ vector [1,2,3,4,5]
<1,2,3,4>

initS : 〈α〉 → 〈α〉
initS = initsS [L− 1]

tail :: Vector a -> Vector a
Returns the tail of a vector.
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λ> tail $ vector [1,2,3,4,5]
<2,3,4,5>

tailS : 〈α〉 → 〈α〉
tailS = tailsS [2]

concat :: Vector (Vector a) -> Vector a
concatenates a vector of vectors.
λ> concat $ vector [vector[1,2,3,4], vector[5,6,7]]
<1,2,3,4,5,6,7>

concatS : 〈〈α〉〉 → 〈α〉
concatS = ++4

reverse :: Vector a -> Vector a
reverses the elements in a vector.
λ> reverse $ vector [1,2,3,4,5]
<5,4,3,2,1>

reverseS : 〈α〉 → 〈α〉
reverseS n = (rev4) ◦ (〈〉0)

where rev x y = y ++ x

r
e
v
e
r
s
e

group :: Integer -> Vector a -> Vector (Vector a)
groups a vector into sub-vectors of n elements.
λ> group 3 $ vector [1,2,3,4,5,6,7,8]
<<1,2,3>,<4,5,6>,<7,8>>

groupS : Int→ 〈α〉 → 〈〈α〉〉
groupS n = (takeS n)0 ◦(dropS n)5

g
r
o
u
p

3

shiftr :: Vector a -> a -> Vector a
right-shifts a vector with an element.
λ> vector [1,2,3,4] ‘shiftr‘ 8
<8,1,2,3>

s
h
i
f
t
r

shiftl :: Vector a -> a -> Vector a
left-shifts a vector with an element.
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λ> vector [1,2,3,4] ‘shiftl‘ 8
<2,3,4,8>

s
h
i
f
t
l

rotr :: Vector a -> Vector a
rotates a vector to the right.
λ> rotr $ vector [1,2,3,4]
<4,1,2,3>

r
o
t
r

rotl :: Vector a -> Vector a
rotates a vector to the left.
λ> rotl $ vector [1,2,3,4]
<2,3,4,1>

r
o
t
l

take :: Integer -> Vector a -> Vector a
takes the first n elements of a vector.
λ> take 5 $ vector [1,2,3,4,5,6,7,8,9]
<1,2,3,4,5>

takeS : 〈α〉 → 〈α〉
takeS n = (sel4) ◦ (〈〉0)

where sel x y =

{
x++ y if index (x) < n

x otherwise

drop :: Integer -> Vector a -> Vector a
drops the first n elements of a vector.
λ> drop 5 $ vector [1,2,3,4,5,6,7,8,9]
<6,7,8,9>

dropS : 〈α〉 → 〈α〉
dropS n = (sel4) ◦ (〈〉0)

where sel x y =

{
x++ y if index (x) > n

y otherwise

takeWhile :: (a -> Bool) -> Vector a -> Vector a
takes the first elements in a vector until the first element that does not fulfill a predicate.
λ> takeWhile (<5) $ vector [1,2,3,4,5,6,7,8,9]
<1,2,3,4>
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takeWhileS : 〈α〉 → 〈α〉
takeWhileS f = concatS ◦ (sel4) ◦ (〈〈〉〉0)

where sel x y =

{
x++ y if f(y[1]) = true ∧ ∃x[L]
x otherwise

filterIdx :: (Integer -> Bool) -> Vector a -> Vector a
returns a vector containing only the elements of another vector whose index satisfies a
predicate.
λ> filterIdx (\x -> x ‘mod‘ 3 == 0) $ vector [0,1,2,3,4,5,6,7,8,9]
<2,5,8>

filterIdxS : 〈α〉 → 〈α〉
filterIdxS f = (sel4) ◦ (〈〉0)

where sel x y =

{
x++ y if f(index (x)) = true

y otherwise

f
i
l
t
e
r
I
d
x

odd

odds :: Vector a -> Vector a

oddsS = filterIdxS(odd)

evens :: Vector a -> Vector a

oddsS = filterIdxS(even)

stride
:: Integer first index
-> Integer stride length
-> Vector a
-> Vector a

does a stride-selection on a vector.
λ> stride 1 3 $ vector [1,2,3,4,5,6,7,8,9]
<1,4,7>

strideS : 〈α〉 → 〈α〉
strideS first stride = (sel4) ◦ (〈〉0)

where sel xy =

{
x++ y if (index (x)− first) mod stride = 0

y otherwise

i
n
i
t
s

get :: Integer -> Vector a -> Maybe a
returns the n-th element in a vector, or Nothing if n > l.
λ> get 3 $ vector [1,2,3,4,5]
Just 3
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getS : 〈α〉 → α

getS n = (sel4)

where sel x y =

{
x if index (x) = n

y otherwise

(<@) :: Vector a -> Integer -> Maybe a
the same as get but with flipped arguments.

(<@!) :: Vector p -> Integer -> p
unsafe version of <@>. Throws an exception if n > l.

gather1
:: Vector Integer vector of indexes
-> Vector a input vector
-> Vector (Maybe a)

selects the elements in a vector at the incexes contained by another vector.

The following versions of this skeleton are available, the number suggesting how many nested
vectors it is operating upon: gather[1-5]

λ> let ix = vector [vector [1,3,4], vector [3,5,1], vector [5,8,9]]
λ> let v = vector [11,12,13,14,15]
λ> gather2 ix v
<<Just 11,Just 13,Just 14>,<Just 13,Just 15,Just 11>,<Just 15,Nothing,Nothing>>

gatherS : 〈Int〉〈α〉 → 〈α〉
gatherS 〈ix〉〈v〉 = sel 0 〈ix〉

where sel x = 〈v〉[x]

g
a
t
h
e
r

〈2, 3, 6〉

(<@>)
:: Vector a input vector
-> Vector Integer vector of indexes
-> Vector (Maybe a)

the same as gather1 but with flipped arguments

The following versions of this skeleton are available, the number suggesting how many nested
vectors it is operating upon.

(<@>), (<<@>>), (<<<@>>>), (<<<<@>>>>), (<<<<<@>>>>>),

replace :: Integer -> p -> Vector p -> Vector p
replaces the n-th element in a vector with another.

λ> replace 5 15 $ vector [1,2,3,4,5,6,7,8,9]
<1,2,3,4,15,6,7,8,9>

replaceS : 〈α〉 → 〈α〉
replaceS n r = (sel4) ◦ (〈〉0)

where sel x y =

{
〈r〉++ y if index (x) = n

x++ y otherwise
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r
e
p
l
a
c
e

3

scatter :: Vector Integer -> Vector p -> Vector p -> Vector p
scatters the elements in a vector based on the indexes contained by another vector.
λ> scatter (vector [2,4,5]) (vector [0,0,0,0,0,0,0,0]) (vector [1,1,1])
<0,1,0,1,1,0,0,0>

scatterS : 〈Int〉〈α〉 → 〈α〉 → 〈α〉
scatterS 〈ix〉〈host〉 = (sel4) ◦ (〈〉0)

where sel x = replaceS index (x) x[1] 〈host〉
s
c
a
t
t
e
r

〈2, 3, 6〉

bitrev :: Vector a -> Vector a
performs a bit-reverse permutation.

b
i
t
r
e
v

λ> bitrev $ vector ["000","001","010","011","100","101","110","111"]
<"111","011","101","001","110","010","100","000">

duals :: Vector b2 -> (Vector b2, Vector b2)
splits a vector in two equal parts.
λ> duals $ vector [1,2,3,4,5,6,7]
(<1,2,3>,<4,5,6>)

unduals :: Vector a -> Vector a -> Vector a
concatenates a previously split vector. See also duals

Interfaces

zipx
:: MoC e
=> Vector ((Vector a -> Vector a -> Vector a) -> Fun

e (Vector a) (Fun e (Vector a) (Ret e (Vector
a))))

vector of MoC-specific context
wrappers for the function <++>

-> Vector (Stream (e a)) input vector of signals
-> Stream (e (Vector a)) output signal of vectors

zipx is a template skeleton for "zipping" a vector of signals. It synchronizes all signals (of
the same MoC) in a vector and outputs one signal with vectors of the synced values. For
each signal in the input vector it requires a function which translates a partition of events
(see ForSyDe.Atom.MoC) into sub-vectors.

There exist helper intances of the zipx skeleton interface for all supported MoCs.

zipxS : 〈 ˙〈α〉 × ˙〈α〉 → ˙〈α〉〉 → 〈S(α)〉 → S(〈α〉)
zipxS 〈part〉 = ((++ )4 〈part〉) ◦ (unitS0)
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z
i
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unzipx :: MoC e =>
(Vector a -> Vector (Ret e a))
-> Integer -> Stream (e (Vector a)) -> Vector (Stream (e a))

unzipx is a template skeleton to unzip a signal carrying vectors into a vector of multiple
signals. It required a function that splits a vector of values into a vector of event partitions
belonging to output signals. Unlike zipx, it also requires the number of output signals. The
reason for this is that it is impossible to determine the length of the output vector without
"sniffing" the content of the input events, which is out of the scope of skeletons and may
lead to unsafe behavior. The length of the output vector is needed in order to avoid infinite
recurrence.

There exist helper intances of the unzipx skeleton interface for all supported MoCs.

unzipxS : (〈α〉 → 〈α̇〉)→ Int→ S(〈α〉)→ 〈S(α)〉
unzipxS part n = ((firstS )0) ◦ (〈tailS〉×n5) ◦ (part )

fig/skel-vector-comm-unzipx.pdf

4.15 ForSyDe.Atom.Utility.Plot

module ForSyDe.Atom.Utility.Plot (
Config(Cfg, verbose, path, title, rate, xmax, labels, fire, other),
defaultCfg, silentCfg, noJunkCfg, prepare, prepareL, prepareV,
showDat, dumpDat, plotGnu, heatmapGnu, showLatex, dumpLatex,
plotLatex, Plottable(toCoord), Plot(sample, sample’, takeUntil, getInfo),
PInfo(Info, typeid, command, measure, style, stacking, sparse), Samples,
PlotData

) where

This module imports plotting and data dumping functions working with "plottable" data types,
i.e. instances of the Plot and Plottable type classes.

4.15.1 User API

The following commands are frequently used as part of the normal modeling routine.
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Configuration settings

data Config
= Cfg
> verbose :: Bool verbose printouts on terminal
> path :: String directory where all dumped files will be found
> title :: String base name for dumped files
> rate :: Float sample rate if relevant. Useful for explicit-tagged signals, ignored

otherwise.
> xmax :: Float Maximum X coordinate. Mandatory for infinite structures, optional

otherwise.
> labels ::

[String]
list of labels with the names of the structures plotted

> fire :: Bool if relevant, fires a plotting or compiling program.
> other :: Bool if relevant, dumps additional scripts and plots.
Record structure containing configuration settings for the plotting commands.

instance Show Config

defaultCfg :: Config
Default configuration: verbose, dump everything possible, fire whatever program needed.
Check source for settings.

Example usage:
λ> defaultCfg {xmax = 15, verbose = False, labels = ["john","doe"]}
Cfg {verbose = False, path = "./fig", title = "plot", rate = 1.0e-2, xmax = 15.0, labels = ["

john","doe"], fire = True, other = True}

silentCfg :: Config
Silent configuration: does not fire any program or print our unnecessary info. Check source
for settings.

noJunkCfg :: Config
Clean configuration: verbose, does not dump more than necessary, fire whatever program
needed. Check source for settings.

Data preparation

prepare
:: Plot a
=> Config configuration settings
-> a plottable data type
-> PlotData structure ready for dumping

Prepares a single plottable data structure to be dumped and/or plotted.

prepareL :: Plot a => Config -> [a] -> PlotData
Prepares a list of plottable data structures to be dumped and/or plotted. See prepare.

prepareV :: Plot a => Config -> Vector a -> PlotData
Prepares a vector of plottable data structures to be dumped and/or plotted. See prepare.

Dumping and plotting data

showDat :: PlotData -> IO ()
Prints out the sampled contents of a prepared data set.
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dumpDat :: PlotData -> IO [String]
Dumps the sampled contents of a prepared data set into separate .dat files.

plotGnu :: PlotData -> IO ()
Generates a GNUplot script and .dat files for plotting the sampled contents of a prepared
data set. Depending on the configuration settings, it also dumps LaTeX and PDF plots, and
fires the script.

OBS: needless to say that GNUplot needs to be installed in order to use this command.
Also, in order to fire GNUplot from a ghci session you might need to install gnuplot-x11.

heatmapGnu :: PlotData -> IO ()
Similar to plotGnu but creates a heatmap plot using the GNUplot engine. For this, the input
needs to contain at least two columns of data, otherwise the plot does not show anything,
i.e. the samples need to be lists or vectors of two or more elements.

OBS: same dependencies are needed as for plotGnu.

showLatex :: PlotData -> IO ()
Prints out a LaTeX environment from a prepared data set. This environment should be
paste inside a tikzpicture in a document title which imports the ForSyDe-LaTeX package.

dumpLatex :: PlotData -> IO [String]
Dumps a set of formatted data files with the extension .flx that can be imported by a
LaTeX document which uses the ForSyDe-LaTeX package.

plotLatex :: PlotData -> IO ()
Creates a standalone LaTeX document which uses the ForSyDe-LaTeX package, plotting a
prepared data set. Depending on the configuration settings, the command pdflatex may
also be invoked to compile a pdf image.

OBS: A LaTeX compiler is required to run the pdflatex command. The ForSyDe-LaTeX
package also needs to be installed according to the instructions on the project web page.

4.15.2 The data types

Below the data types involved are shown and the plottable structures are documented.

class Plottable a where
This class gathers types which can be sampled and converted to a numerical string which
can be read and interpreted by a plotter engine.

Methods

toCoord :: a -> String
Transforms the input type into a coordinate string.

instance (Show a, Real a) => Plottable a
Real numbers that can be converted to a floating point representation

instance Plottable TimeStamp
Time stamps

instance Plottable a => Plottable (Vector a)
Vectors of plottable types

instance (Show a, Plottable a) => Plottable (AbstExt a)
Absent-extended plottable types

http://www.gnuplot.info/
https://github.com/forsyde/forsyde-latex
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class Plot a where
This class gathers all ForSyDe-Atom structures that can be plotted.

Methods

sample :: Float -> a -> Samples
Samples the data according to a given step size.

sample :: a -> Samples ,
Samples the data according to the internal structure.

takeUntil :: Float -> a -> a
Takes the first samples until a given tag.

getInfo :: a -> PInfo
Returns static information about the data type.

instance Plottable a => Plot (Vector a)
vectors of coordinates

instance Plottable a => Plot (Signal a)
SY signals.

instance Plottable a => Plot (Signal a)
SDF signals.

instance Plottable a => Plot (Signal a)
DE signals.

instance Plottable a => Plot (Signal a)
CT signals.

data PInfo
= Info
> typeid :: String id used usually in implicit tags
> command :: String LaTeX identifier
> measure :: String unit of measure
> style :: String style tweaking in the GNUplot script
> stacking :: Bool if the plot is stacking
> sparse :: Bool if the sampled data is sparse instead of dense

Static information of each plottable data type.

instance Show PInfo

type Samples = [(String, String)]
Alias for sampled data

type PlotData = (Config, PInfo, [(String, Samples)])
Alias for a data set prepared to be plotted.

4.16 ForSyDe.Atom.Utility.Tuple

module ForSyDe.Atom.Utility.Tuple (
at22, (||<), (<>), ($$)

) where
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This module implements general purpose utility functions. It mainly hosts functions dealing with
tuples. Utility are provided for up until 9-tuples. Follow the examples in the source code in case
it does not suffice.

Reminder

Make sure to consult naming conventions in section 4.1.1 in order to interpret the names
and type signatures correctly.

at22 :: (a1, a2) -> a2
The atxy functions return the y-th element of an x -tuple.

ForSyDe.Atom.Utility exports the constructors below. Please follow the examples in the
source code if they do not suffice:

at21, at22,
at31, at32, at33,
at41, at42, at43, at44,
at51, at52, at53, at54, at55,
at61, at62, at63, at64, at65, at66,
at71, at72, at73, at74, at75, at76, at77,
at81, at82, at83, at84, at85, at86, at87, at88,
at91, at92, at93, at94, at95, at96, at97, at98, at99,

Example:

λ> at53 (1,2,3,4,5)
3

(||<) :: (Functor f1, Functor f2) =>
f1 (f2 (a1, a2)) -> (f1 (f2 a1), f1 (f2 a2))

This set of utility functions "unzip" nested n-tuples, provided as postfix operators. They
are crucial for reconstructing data types from higher-order functions which input functions
with multiple outputs. It relies on the nested types being instances of Functor.

The operator convention is (|+<+), where the number of | represent the number of layers
the n-tuple is lifted, while the number of < + 1 is the order n of the n-tuple.

ForSyDe.Atom.Utility exports the constructors below. Please follow the examples in the
source code if they do not suffice:

|<, |<<, |<<<, |<<<<, |<<<<<, |<<<<<<, |<<<<<<<, |<<<<<<<<,
||<, ||<<, ||<<<, ||<<<<, ||<<<<<, ||<<<<<<, ||<<<<<<<, ||<<<<<<<<,

|||<, |||<<, |||<<<, |||<<<<, |||<<<<<, |||<<<<<<, |||<<<<<<<, |||<<<<<<<<,
||||<, ||||<<, ||||<<<, ||||<<<<, ||||<<<<<, ||||<<<<<<, ||||<<<<<<<, ||||<<<<<<<<,

Example:

λ> :set -XPostfixOperators
λ> ([Just (1,2,3), Nothing, Just (4,5,6)] ||<<)
([Just 1,Nothing,Just 4],[Just 2,Nothing,Just 5],[Just 3,Nothing,Just 6])

(<>) :: (a1 -> a2 -> b1) -> (a1, a2) -> b1
Infix currying operators used for convenience.

The operator convention is (<>+), where the number of > + 1 is the order n of the n-tuple.

ForSyDe.Atom.Utility exports the constructors below. Please follow the examples in the
source code if they do not suffice:

<>, <>>, <>>>, <>>>>, <>>>>>, <>>>>>>, <>>>>>>>, <>>>>>>>>

Example:
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λ> (+) <> (1,2)
3

($$) :: (a1 -> b1, a2 -> b2) -> (a1, a2) -> (b1, b2)
Infix function application operator for tuples.

The operator convention is ($+), where the number of $ is the order n of the n-tuple. For
Applying a function on nontuples we rely on $ provided by Prelude.

ForSyDe.Atom.Utility exports the constructors below. Please follow the examples in the
source code if they do not suffice:
$$, $$$, $$$$, $$$$$, $$$$$$, $$$$$$$, $$$$$$$$, $$$$$$$$$

Example:
λ> ((+),(-)) $$ (1,1) $$ (2,2)
(3,-1)
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