
Design of Sensor Signal
Processing with ForSyDe
Modeling, Validation and Synthesis

George Ungureanu
School of EECSKTH Royal Institute of Technology
ugeorge@kth.se

Timmy Sundström
Business Area AeronauticsSaab AB

Anders Åhlander
Business Area SurveillanceSaab AB

Ingo Sander
School of EECSKTH Royal Institute of Technology

Ingemar Söderquist
Business Area AeronauticsSaab ABVersion 0.3.1

1

Version History:0.1 2019/07/08 First released version.0.2 2019/08/09 Added section “Model Synthesis to VHDL”.0.3 2020/06/17 Added section “Modeling the Radar Environment”.0.3.1 2020/08/10 forsyde-atom-extensions merged to upstream. Code updated.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Unported(CC BY-SA 4.0) License. cba
The code listed throughout this document is generated from several projects licensed under the BSD-3 Clause License,unless specified otherwise.
This report was partially funded by the Swedish Governmental Agency for Innovation Systems, NFFP7 project: Correctby construction design methodology #2017-04892 .

2

Design of Sensor Signal Processing with ForSyDe
version 0.3.1

George Ungureanu
ugeorge@kth.se

Timmy Sundström
timmy.sundstrom@saabgroup.com

Anders Åhlander
anders.ahlander@saabgroup.com

Ingo Sander
ingo@kth.se

Ingemar Söderquist
ingemar.soderquist@saabgroup.com

Abstract
This document serves as a report and as a step-by-step tutorial for modeling, simulating, testing

and synthesizing complex heterogeneous systems in ForSyDe, with special focus on parallel and
concurrent systems. The application under test is a radar signal processing chain for an active
electronically scanned array (AESA) antenna provided by Saab AB. Throughout this report the
application will be modeled using several different frameworks, gradually introducing new modeling
concepts and pointing out similarities and differences between them.

Contents
1 Introduction 5

1.1 Application Specification . 6
1.2 Using This Document . 7

2 High-Level Model of the AESA Signal Processing Chain in ForSyDe-Atom 9
2.1 Quick Introduction to ForSyDe-Atom . 9
2.2 A High-Level Model . 10

2.2.1 Type Aliases and Constants . 11
2.2.2 Video Processing Pipeline Stages . 11
2.2.3 System Process Network . 21
2.2.4 System Parameters . 21
2.2.5 Coefficient Generators . 21

2.3 Model Simulation Against Test Data . 23
2.4 Conclusion . 24

3 Alternative Modeling Framework: ForSyDe-Shallow 26
3.1 The High-Level Model . 26

3.1.1 Imported Libraries . 26
3.1.2 Type Synonyms . 27
3.1.3 Video Processing Pipeline Stages . 27
3.1.4 The AESA Process Network . 29

3.2 Model Simulation Against Test Data . 29
3.3 Conclusion . 30

4 Modeling the Radar Environment 31
4.1 Object Reflection Model . 32

4.1.1 Approach 1: Translating a Numerical Program . 33
4.1.2 Approach 2: CT Signal Generators . 34

4.2 Sampling Noisy Data. Using Distributions. 36
4.3 Conclusions . 37

5 Validating a ForSyDe Model Against the Specification 38
5.1 Formal Notation . 38

3

5.2 Properties . 39
5.2.1 Imports . 39
5.2.2 Formulations . 39
5.2.3 Main function . 41
5.2.4 Data Generators . 42

5.3 Running the Test Suite. Conclusion . 44

6 Refining the Model Behavior. A Streaming Interpretation of AESA 45
6.1 The High-Level Model . 45

6.1.1 Libraries and Aliases . 45
6.1.2 Video Processing Stages . 46
6.1.3 System Process Network . 53

6.2 Model Simulation Against Test Data . 54
6.3 Checking System Properties . 54

6.3.1 Imports . 55
6.3.2 Properties . 55
6.3.3 Main function. Test Suite Results . 57

6.4 Conclusion . 58

7 Model Synthesis to VHDL 59
7.1 Refinement 1: Untimed MAV to Timed FIR . 59

7.1.1 Model . 59
7.1.2 Simulation . 61
7.1.3 Properties . 61

7.2 Refinement 2: Floating Point to Q19 . 62
7.2.1 Model . 62
7.2.2 Simulation . 63
7.2.3 Properties . 63

7.3 Refinement 3: Deep Language Embedding . 64
7.3.1 Quick Introduction to ForSyDe-Deep . 65
7.3.2 Model . 66
7.3.3 Simulation. Synthesis . 68
7.3.4 Properties . 71

7.4 R4: Balancing the FIR Reduction . 71
7.4.1 Model . 72
7.4.2 Simulation. Synthesis . 72
7.4.3 Properties . 73

7.5 Conclusions . 74

8 Acknowledgements 75

References 75

4

1 Introduction

In order to develop more cost-efficient implementation methods for complex systems, we need to understand
and exploit the inherent properties derived from the specification of the target applications and, based on
these properties, be able to explore the design space offered by alternative platforms. Such is the case of
the application studied in this report: the active electronically scanned array (AESA) radar is a versatile
system that is able to determine both position and direction of incoming objects, however critical parts
of its signal processing has significant demands on processing and memory bandwidth, making it well
out-of reach from the general public usage. We believe that a proper understanding of the temporal and
spatial properties of the signal processing chain can lead to a better exploration of alternative solutions,
ideally making it an affordable appliance in the context of current technology limitations. Nevertheless,
expressing behaviors and (extra-functional) properties of systems in a useful way is far from a trivial task
and it involves respecting some key principles:

• the language(s) chosen to represent the models need(s) to be formally defined and unambiguous to
be able to provide a solid foundation for analysis and subsequent synthesis towards implementation.

• the modeling paradigm should offer the right abstraction level for capturing the needed properties
(Lee 2015). An improper model might either abstract away essential properties or over-specify them
in a way that makes analysis impossible. In other words it is the engineer’s merit to find the right
model for the right “thing being modeled”.

• the models, at least during initial development stages, need to be deterministic with regard to
defining what correct behavior is (Lee 2018).

• at a minimum, the models need to be executable in order to verify their conformance with the
system specification. Ideally they should express operational semantics which are traceable across
abstraction levels, ultimately being able to be synthesized on the desired platform (Sifakis 2015).

ForSyDe is a design methodology which envisions “correct-by-construction system design” through formal
or rigorous methods. Its associated modeling frameworks offer means to tackle the challenges enumerated
above by providing well-defined composable building blocks which capture extra-functional properties in
unison with functional ones. ForSyDe-Shallow is a domain specific language (DSL) shallow-embedded
in the functional programming language Haskell, meaning that it can be used only for modeling and
simulation purposes. It introduced the concept of process constructors (Sander and Jantsch 2004) as
building blocks that capture the semantics of computation, concurrency and synchronization as dictated
by a certain model of computation (MoC). ForSyDe-Atom is also a shallow-embedded (set of) DSL
which extends the modeling concepts of ForSyDe-Shallow to systematically capture the interacting
extra-functional aspects of a system in a disciplined way as interacting layers of minimalistic languages
of primitive operations called atoms (Ungureanu and Sander 2017). ForSyDe-Deep is a deep-embedded
DSL implementing a synthesizable subset of ForSyDe, meaning that it can parse the structure of process
networks written in this language and operate on their abstract syntax: either simulate them or further
feed them to design flows. Currently ForSyDe-Deep is able to generate GraphML structure files and
synthesizable VHDL code.

This documents presents alternatives ways to modelling the AESA radar signal processing chain and, using
these models, gradually introducing one concept at a time and pointing towards reference documentation.
The final purpose is to refine, synthesize, and replace parts of the behavioral model down to VHDL
implementation on FPGA hardware platforms, and co-simulate these design artifacts along with the
initial high-level model. The report itself is written using literate programming, which means that all
code snippets contained are actual compiled code alternating with documentation text. Following the
report might be difficult without some initial clarification. The remaining parts of section 1 will present
a guide to using this document, as well as an introduction to the AESA application. In section 2 a
high-level, functionally complete ForSyDe-Atom model of the application is thoroughly presented with
respect to the specification, and tested against a set of known input data. In section 3 an equivalent model
written in ForSyDe-Shallow is briefly presented and tested, to show the main similarities and differences
between the two modeling APIs. In section 4 we model the radar environment as describing the object
reflections, represented by continuous signals in time subjected to white noize. In section 5 is introduced
the concept of property checking for the purpose of validation of ForSyDe designs. We formulate a set of
properties in the QuicCheck DSL for each component of the AESA model which are validated against
a number of randomly-generated tests. In section 6.1 we focus on refining the behavior of the initial
(high-level) specification model to lower level ones, more suitable for (backend) implementation synthesis,

5

https://forsyde.github.io/
https://forsyde.github.io/forsyde-shallow
https://forsyde.github.io/forsyde-atom
https://forsyde.github.io/forsyde-deep
https://en.wikipedia.org/wiki/Literate_programming
https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html

followed by section 6.3 where we formulate new properties for validating some of these refinements. All
refinements in section 6 happen in the domain(s) of the ForSyDe-Atom DSL. In section 7 we switch the
DSL to ForSyDe-Deep, which benefits from automatic synthesis towards VHDL: in each subsection the
refinements are stated, the refined components are modeled, properties are formulated to validate them,
and in sections 7.3, 7.4 VHDL code is generated and validated.

1 2

3 5

4

6.1

6.3

7.1, 7.2 7.3, 7.4

Figure 1: Reading order dependencies

Figure 1 depicts a reading order suggestion, based on information dependencies. The dashed line between
section 3 and sections 7.3, 7.4 suggests that understanding the latter is not directly dependent on the
former, but since ForSyDe-Deep syntax is derived from ForSyDe-Shallow, it is recommended to get
acquainted with the ForSyDe-Shallow syntax and its equivalence with the ForSyDe-Atom syntax.

1.1 Application Specification

An AESA, see picture below, may consist of thousands of antenna elements. The relative phases of the
pulses of the antenna’s different antenna elements can be set to create a constructive interference in the
chosen main lobe bearing. In this way the pointing direction can be set without any moving parts. When
receiving, the direction can be steered by following the same principle, as seen the Digital Beam Former
below. One of the main advantages of the array antennas is the capacity to extract not only temporal
but also spatial information, i.e. the direction of incoming signals.

Figure 2 shows a simplified radar signal processing chain that is used to illustrate the calculations of
interest. The input data from the antenna is processed in a number of steps.

A
E
S
A

ra
ng
e
bi
ns

a
n
te
n
n
a

el
em

en
ts

pulses

indata cube

video

DBF PC

DFB

DFB

CFAR

CFAR

INT

corner turn

50% overlap

2 × data

Figure 2: Overview of the video processing chain

In this report we assume one stream per antenna element. The indata is organized into a sequence
of “cubes”, each corresponding to a certain integration interval. Each sample in the cube represents a

6

particular antenna element, pulse and range bin. The data of the cube arrives pulse by pulse and each
pulse arrives range bin by range bin. This is for all elements in parallel. Between the Pulse Compression
(PC) and Doppler Filter Bank (DFB) steps there is a corner turn of data, i.e. data from all pulses must
be collected before the DFB can execute.

The different steps of the chain, the antenna and the input data format are briefly described in the
following list. For a more detailed description of the processing chain, please refer to section 2.

• Digital Beam Forming (DBF): The DBF step creates a number of simultaneous receiver beams,
or “listening directions”, from the input data. This is done by doing weighted combinations of the
data from the different antenna elements, so that constructive interference is created in the desired
bearings of the beams. The element samples in the input data set are then transformed into beams.

• Pulse Compression (PC): The goal of the pulse compression is to collect all received energy from
one target into a single range bin. The received echo of the modulated pulse is passed through a
matched filter. Here, the matched filtering is done digitally.

• Doppler Filter Bank incl. envelope detection (DFB): The DFB gives an estimation of the target’s
speed relative to the radar. It also gives an improved signal-to-noise ratio due to a coherent
integration of indata. The pulse bins in the data set are transformed into Doppler channels. The
envelope detector calculates the absolute values of the digital samples. The data is real after this
step.

• Constant False Alarm Ratio (CFAR): The CFAR processing is intended to keep the number of
false targets at an acceptable level while maintaining the best possible sensitivity. It normalizes the
video in order to maintain a constant false alarm rate when the video is compared to a detection
threshold. With this normalization the sensitivity will be adapted to the clutter situation in the
area (around a cell under test) of interest.

• Integrator (INT) The integrator is an 8-tap unsigned integrator that integrates channel oriented
video. Integration shall be done over a number of FFT batches of envelope detected video. Each
Doppler channel, range bin and antenna element shall be integrated.

The following table briefly presents the dimensions of the primitive functions associated with each
processing stage, where data sets are measured in number of elements processed organized in channels ×
range bins × pulses; data precision is measured in bit width; and approximative performance is given in
MOPS. These dimensions represent the scaled-down version of a realistic AESA radar signal processing
system, with 16 input antenna channels forming into 8 beams.

Table 1: Dimensions of the AESA case study covered in the report

Block In Data Set Out Data Set
Type
In Out

Precision
In Out

Approx.
perform.

DBF 16× 1× 1 8× 1× 1 C C 16 20 2688
PC 1× 1024× 1 1× 1024× 1 C C 20 20 4608
DFB 1× 1× 256 1× 1× 256 C R 20 20 7680
CFAR 1× 1024× 256 1× 1024× 256 R R 20 16 360
INT 1× 1× 1 1× 1× 1 R R 16 16 24576
AESA 16× 1024× 256 2(8× 1024× 256) C R – – 39912

1.2 Using This Document

PREREQUISITES: the document assumes that the reader is familiar with the functional programming
language Haskell, its syntax, and the usage of a Haskell interpreter (e.g. ghci). Otherwise, we recommend
consulting at least the introductory chapters of one of the following books by Lipovača (2011) and Hutton
(2016) or other recent books in Haskell. The reader also needs to be familiar with some basic ForSyDe
modeling concepts, such as process constructor, process or signal. We recommend going through at least
the online getting started tutorial on ForSyDe-Shallow or the one on ForSyDe-Atom, and if possible,
consulting the (slightly outdated) book chapter on ForSyDe (Sander, Jantsch, and Attarzadeh-Niaki
2017).

7

https://www.haskell.org/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html
https://forsyde.github.io/forsyde-shallow/getting_started
https://forsyde.github.io/forsyde-atom/assets/manual.pdf

This document has been created using literate programming. This means that all code shown in the
listings is compilable and executable. There are two types of code listing found in this document. This
style

1 -- | API documentation comment
2 myIdFunc :: a -> a
3 myIdFunc = id

shows source code as it is found in the implementation files, where the line numbers correspond to the
position in the source file. This style

Prelude> 1 + 1
2

suggests interactive commands given by the user in a terminal or an interpreter session. The listing above
shows a typical ghci session, where the string after the prompter symbol > suggests the user input (e.g. 1
+ 1). Whenever relevant, the expected output is printed one row below (e.g. 2).

The way this document is meant to be parsed efficiently is to load the source files themselves in an
interpreter and test the exported functions gradually, while reading the document at the same time. Due
to multiple (sometimes conflicting) dependencies on external packages, for convenience the source files
are shipped as multiple Stack packages each creating an own sandbox on the user’s local machine with all
dependencies and requirements taken care of. Please refer to the project’s README file for instructions on
how to install and compile or run the Haskell files.

At the beginning of each chapter there is meta-data guiding the reader what tools and packages are used,
like:

Package aesa-atom-0.1.0 path: ./aesa-atom/README.md

This table tells that the package where the current chapter’s code resides is aesa-atom, version 0.1.0. This
table might contain information on the main dependency packages which contain important functions, and
which should be consulted while reading the code in the current chapter. If the main package generates
an executable binary or a test suite, these are also pointed out. The third column provides additional
information such as a pointer to documentation (relative path to the project root, or web URL), or usage
suggestions.

It is recommended to read the main package’s README file which contains instructions on how to install,
compile and test the software, before proceeding with following a chapter. Each section of a chapter is
written within a library module, pointed out in the beginning of the respective section by the line:

1 module ForSyDe.X.Y where

The most convenient way to test out all functions used in module ForSyDe.X.Y is by loading its source
file in the sandboxed interpreter, i.e. by running the following command from the project root:

stack ghci src/ForSyDe/X/Y.lhs

An equally convenient way is to create an own .hs file somewhere under the project root, which imports
and uses module ForSyDe.X.Y, e.g.

1 -- MyTest.hs
2 import ForSyDe.X.Y
3

4 myData = [1,2,3,4,5] :: [Int]
5 myTest = functionFromForSyDeXY myData

This file can be loaded and/or compiled from within the sandbox, e.g. with stack ghci MyTest.hs.

8

https://docs.haskellstack.org/en/stable/README/

2 High-Level Model of the AESA Signal Processing Chain in
ForSyDe-Atom

This section guides the reader throughout translating “word-by-word” the provided specifications
of the AESA signal processing chain into a concrete, functionally complete, high-level executable
model in ForSyDe-Atom. This first attempt focuses mainly on the top-level functional behavior
of the system, exerting the successive transformations upon the input video cubes, as suggested
by Figure 2. We postpone the description/derivation of more appropriate time behaviors for
later sections. Enough AESA system details are given in order to understand the model. At
the end of this section we simulate this model against a realistic input set of complex antenna
data, and test if it is sane (i.e. provides the expected results).

Package aesa-atom-0.1.0 path: ./aesa-atom/README.md
Deps forsyde-atom-0.3.1 url: https://forsyde.github.io/forsyde-atom/api/
Bin aesa-cube usage: aesa-cube --help

Historically, ForSyDe-Atom has been a spin-off of ForSyDe-Shallow which has explored new modeling
concepts, and had a fundamentally different approach to how models are described and instantiated.
ForSyDe-Atom introduced the concept of language layer, extending the idea of process constructor, and
within this setting it explored the algebra of algorithmic skeletons, employed heavily within this report.
As of today, both ForSyDe-Shallow and ForSyDe-Atom have similar APIs and are capable of modeling
largely the same behaviors. The main syntax differences between the two are covered in section 3, where
the same high-level model is written in ForSyDe-Shallow.

2.1 Quick Introduction to ForSyDe-Atom

Before proceeding with the modeling of the AESA processing chain, let us consolidate the main ForSyDe
concepts which will be used throughout this report: layer, process constructor and skeleton. If you are
not familiar with ForSyDe nomenclature and general modeling principles, we recommend consulting the
documentation pointed out in section 1 first.

As seen in section 1.1, most of the AESA application consists of typical DSP algorithms such as matrix
multiplications, FFT, moving averages, etc. which lend themselves to streaming parallel implementations.
Hence we need to unambiguously capture the two distinct aspects of the AESA chain components:

• streaming behavior is expressed in ForSyDe through processes which operate on signals encoding
a temporal partitioning of data. Processes are instantiated exclusively using process constructors
which can be regarded as templates inferring the semantics of computation, synchronization
and concurrency as dictated by a certain model of computation (MoC) (Sander and Jantsch
(2004),Edward A. Lee and Seshia (2016)).

• parallelism is expressed through parallel patterns which operate on structured types (e.g. vectors)
encoding a spatial partitioning of data. These patterns are instantiated as skeletons, which are
templates inferring the semantics of distribution, parallel computation and interaction between
elements, as defined by the algebra of catamorphisms (Fischer, Gorlatch, and Bischof 2003).

In order to capture these two1 interacting aspects in unison as a complete system, we describe them in
terms of two distinct, orthogonal layers within the ForSyDe-Atom framework. A language layer is a (very
small) domain specific language (DSL) heavily rooted in the functional programming paradigm, which is
able to describe one aspect of a cyber-physical system (CPS). Layers interact with one another by virtue
of the abstraction principle inherent to a functional programming language (Backus 1978): each layer
defines at least one higher order function that is able to take a function (i.e. abstraction) from another
layer as an argument and to lift it within its own domain. To picture the interaction between layers,
consider Figure 2 where, although we use the same farm vector skeleton and comb synchronous (SY)
process constructor, the two different compositions describe two different (albeit semantically equivalent)
systems: the first one is instantiating a farm network of SY processes operating on a vector of signals in

1and other aspects, not covered in this report

9

https://forsyde.github.io/forsyde-atom/
https://forsyde.github.io/forsyde-shallow/

Fu

nct
ion

Layer

F
u
n
ct
io
n

MoC
Layer

P
ro
ce
ss

Skele
ton Layer

P
ro
ce
ss

N
et
w
o
rk

v

v
t

v
t

v
t

v
t

Fu

nct
ion

Layer

F
u
n
ct
io
n

Ske
leton

Layer

V
ec
to
r
F
u
n
ct
io
n

MoC Layer

P
ro
ce
ss v

vvv

vvv

t

vvv

t
vvv

t
vvv

t

(+1)

SY.comb

farm

〈{11, 12, 13},
{21, 22, 23}〉

〈{12, 13, 14},
{22, 23, 24}〉 farm(+1)

SY.comb

{〈11, 21〉, 〈12, 22〉, 〈13, 23〉} {〈12, 22〉, 〈13, 23〉, 〈14, 24〉}

V.farm11(SY.comb11(+1)) SY.comb11(V.farm11(+1))

Figure 3: Depiction of layer usage: (left) skeleton networks of processes; (right) processes of skeleton
functions

parallel; whereas the second one is instantiating a single SY process operating on o signal where each
event is carrying a vector of values.

2.2 A High-Level Model

This section presents a high-level behavioral model of the AESA signal processing chain presented in
section 1.1. This model follows intuitive and didactic way to tackle the challenge of translating the textual
specifications into an executable ForSyDe specification and is not, in any circumstance, the only way to
model the application. As of section 2.1 we represent each stage in the AESA chain as a process acting
upon (complete) cubes of data, i.e. as processes of skeleton functions. At this phase in the system design
we do not care how the cubes are being formed or how the data is being carried around, bur rather on
what transformations are applied on the data cubes during each subsequent stage of the AESA pipeline.
The purpose of the model is to provide a executable reference for the AESA system functionality, that
can later be derived to more efficient descriptions.

The code for this section is written in the following module, see section 1.2 on how to use it:

18 module AESA.CubesAtom where

As the AESA application uses complex numbers, we use Haskell’s Complex type.

23 import Data.Complex

The only timed behavior exerted by the model in this section is the causal, i.e. ordered, passing of
cubes from one stage to another. In order to enable a simple, abstract, and thus analyzable “pipeline”
behavior this passing can be described according to the perfect synchrony hypothesis, which assumes
the processing of each event (cube) takes an infinitely small amount of time and it is ready before the
next synchronization point. This in turn implies that all events in a system are synchronized, enabling
the description of fully deterministic behaviors over infinite streams of events. These precise execution
semantics are captured by the synchronous reactive (SY) model of computation (MoC) (Edward A. Lee
and Seshia (2016),Benveniste et al. (2003)), hence we import the SY library from the MoC layer of
ForSyDe-Atom, see (Ungureanu and Sander 2017), using an appropriate alias.

39 import ForSyDe.Atom.MoC.SY as SY

For describing parallel operations on data we use algorithmic skeletons (Fischer, Gorlatch, and Bischof

10

http://hackage.haskell.org/package/base/docs/Data-Complex.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC.html

(2003),Skillicorn (2005)), formulated on ForSyDe-Atom’s in-house Vector data type, which is a shallow,
lazy-evaluated implementation of unbounded arrays, ideal for early design validation. Although dependent,
bounded, and even boxed (i.e. memory-mapped) alternatives exist, such as FSVec or REPA Arrays, for
the scope of this project the functional validation and (by-hand) requirement analysis on the properties of
skeletons will suffice. We also import the Matrix and Cube utility libraries which contain type synonyms
for nested Vectors along with their derived skeletons, as well a DSP which contain commonly used DSP
blocks defined in terms of vector skeletons.

55 import ForSyDe.Atom.Skel.FastVector as V
56 import ForSyDe.Atom.Skel.FastVector.Matrix as M
57 import ForSyDe.Atom.Skel.FastVector.Cube as C
58 import ForSyDe.Atom.Skel.FastVector.DSP

Finally, we import the local project module defining different coefficients for the AESA algorithms,
presented in detail in section 2.2.5.

63 import AESA.Coefs

2.2.1 Type Aliases and Constants

The system parameters are integer constants defining the size of the application. For a simple test scenario
provided by Saab AB, we have bundled these parameters in the following module, and we shall use their
variable names throughout the whole report:

71 import AESA.Params
72 import Data.Ratio

For ease of documentation we will be using type synonyms (aliases) for all types and structures throughout
this design:

• Antenna denotes a vector container for the antenna elements. Its length is equal to the number of
antennas in the radar NA.

• After Digital Beamforming (DBF), the antenna elements are transformed into NB beams, thus we
associate the Beam alias for the vector container wrapping those beams.

• Range is a vector container for range bins. All antennas have the same number of range bins Nb,
rendering each Antenna× Range a perfect matrix of samples for every pulse.

• Window stands for a Doppler window of NFFT pulses.

90 type Antenna = Vector -- length: nA
91 type Beam = Vector -- length: nB
92 type Range = Vector -- length: nb
93 type Window = Vector -- length: nFFT

Finally we provide two aliases for the basic Haskell data types used in the system, to stay consistent with
the application specification.

98 type CpxData = Complex Float
99 type RealData = Float

2.2.2 Video Processing Pipeline Stages

In this section we follow each stage described in section 1.1, and model them as a processes operating on
cubes (three-dimensional vectors) of antenna samples.

2.2.2.1 Digital Beamforming (DFB)

The DBF receives complex in data, from NA antenna elements and forms NB simultaneous receiver
beams, or “listening directions”, by summing individually phase-shifted in data signals from all elements.
Considering the indata video cube, the transformation applied by DBF, could be depicted as in Figure 4.

11

http://hackage.haskell.org/package/forsyde-atom/docs/ForSyDe-atom-Core-Vector.html
http://hackage.haskell.org/package/parameterized-data/docs/Data-Param-FSVec.html
http://hackage.haskell.org/package/repa

ra
ng
e
bi
ns

a
n
te
n
n
a
s

pulses

pulse

NA

Nb

NFFT

ra
ng
e
bi
ns

b
ea

m
s

pulses

NB

Nb pulse

NFFT

⇒

Figure 4: DBF on video structure

Considering the application specification in section 1.1 on the input data, namely “for each antenna the
data arrives pulse by pulse, and each pulse arrives range bin by range bin”, we can assume that the video
is received as Antenna (Window (Range a)) cubes, meaning that the inner vectors are the range bins.
However, Figure 4 shows that the beamforming function is applied in the antenna direction, so we need to
transpose the cube in such a way that Antenna becomes the inner vector, i.e. Window (Range (Antenna
a)). We thus describe the DBF stage as a combinational SY process comb acting upon signals of Cubes,
namely mapping the beamforming function fDBF on each column of each pulse matrix (see Figure 4).

dbf

farm(fDBF)T

SY.comb

Figure 5: DBF stage process

128 dbf :: Signal (Antenna (Window (Range CpxData)))
129 -> Signal (Window (Range (Beam CpxData)))
130 dbf = SY.comb11 (M.farm11 fDBF . C.transpose)

The beamforming function is specified like in eq. 1, where ek, ∀k ∈ [1, NA] denotes the samples from
antenna elements, and respectively bi, ∀i ∈ [1, NB] are samples for each beam. This is in fact a of
matrix-vector multiplication, thus we implement eq. 1 at the highest level of abstraction simply as
matrix/vector operations like in eq. 2.

bi(n) =
NA∑
k=1

ek(n) · αki ∀i ∈ [1, NB] (1)

140 fDBF :: Antenna CpxData -- ˆ input antenna elements
141 -> Beam CpxData -- ˆ output beams
142 fDBF antennaEl = beams
143 where
144 beams = V.reduce (V.farm21 (+)) beamMatrix
145 beamMatrix = M.farm21 (*) elMatrix beamConsts
146 elMatrix = V.farm11 V.fanout antennaEl
147 beamConsts = mkBeamConsts dElements waveLength nA nB :: Matrix CpxData

Function Original module Package
farm11, reduce, length ForSyDe.Atom.Skel.FastVector forsyde-atom
farm11, farm21 ForSyDe.Atom.Skel.FastVector.Matrix forsyde-atom

12

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-Matrix.html

Function Original module Package
transpose ForSyDe.Atom.Skel.FastVector.Cube forsyde-atom
comb11 ForSyDe.Atom.MoC.SY forsyde-atom
mkBeamConsts AESA.Coefs aesa-atom
dElements, waveLenth, nA, nB AESA.Params aesa-atom

elMatrix
e1 e1 . . .
e2 e2 . . .
...

...
. . .

eNA
eNA

. . .

 ×
beamConsts

α11 α12 . . . α1NB

α21 α22 . . . α2NB

...
...

. . .
...

αNA1 αNA2 . . . αNANB

⇒

⇒

beamMatrix
e1α11 e1α12 . . . e1α1NB

e2α21 e2α22 . . . e2α2NB

...
...

. . .
...

eNA
αNA1 eNA

αNA2 . . . eNA
αNANB

∑
rows

=
beam[

b1 b2 . . . bn
]

(2)

In fact the operation performed by the fDBF function in eq. 1, respectively in eq. 2 is nothing else but a
dot operation between a vector and a matrix. Luckily, ForSyDe.Atom.Skel.FastVector.DSP exports a
utility skeleton called dotvm which instantiates exactly this type of operation. Thus we can instantiate
an equivalent f ′DBF simply as

196 fDBF' antennaEl = antennaEl `dotvm` beamConsts
197 where
198 beamConsts = mkBeamConsts dElements waveLength nA nB :: Matrix CpxData

The expanded version fDBF was given mainly for didactic purpose, to get a feeling for how to manipulate
different skeletons to obtain more complex operations or systems. From now on, in this section we will
only use the library-provided operations, and we will study them in-depth only later in section 6.

2.2.2.2 Pulse Compression (PC)

ra
ng
e
bi
ns

b
ea

m
s

pulse

pulse

NB

Nb

NFFT

pc
farm(fPC)T

SY.comb

Figure 6: PC: direction of application on video structure (left); process (right)

In this stage the received echo of the modulated pulse, i.e. the information contained by the range bins, is
passed through a matched filter for decoding their modulation. This essentially applies a sliding window,
or a moving average on the range bin samples. Considering the video cube, the PC transformation is
applied in the direction shown in Figure 6, i.e. on vectors formed from the range of every pulse.

13

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-Cube.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html

The PC process is mapping the fPC on each row of the pulse matrices in a cube, however the previous
stage has arranged the cube to be aligned beam-wise. This is why we need to re-arrange the data so that
the innermost vectors are Ranges instead, and we do this by simply transpose-ing the inner Range ×
Beam matrices into Beam × Range ones.

221 pc :: Signal (Window (Range (Beam CpxData)))
222 -> Signal (Window (Beam (Range CpxData)))
223 pc = SY.comb11 (V.farm11 (V.farm11 fPC . M.transpose))
224 -- ˆ == (M.farm11 fPC . V.farm11 M.transpose)

Here the function fPC applies the fir skeleton on these vectors (which computes a moving average if
considering vectors). The fir skeleton is a utility formulated in terms of primitive skeletons (i.e. farm and
reduce) on numbers, i.e. lifting arithmetic functions. We will study this skeleton later in this report and
for now we take it “for granted”, as conveniently provided by the DSP utility library. For this application
we also use a relatively small average window (5 taps).

233 fPC :: Range CpxData -- ˆ input range bin
234 -> Range CpxData -- ˆ output pulse-compressed bin
235 fPC = fir (mkPcCoefs pcTap)

Function Original module Package
comb11 ForSyDe.Atom.MoC.SY forsyde-atom
farm11 ForSyDe.Atom.Skel.FastVector forsyde-atom
farm11, transpose ForSyDe.Atom.Skel.FastVector.Matrix forsyde-atom
fir ForSyDe.Atom.Skel.FastVector.DSP forsyde-atom
mkPcCoefs AESA.Coefs aesa-atom

2.2.2.3 Corner Turn (CT) with 50% overlapping data

b
ea

m
s

ra
ng
e
bi
ns

ra
ng
e
bi
ns

pulse windows

pulse windows

left channel

right channel

NFFT /2

NFFT

Figure 7: Concurrent processing on 50% overlapped data

During the CT a rearrangement of data must be performed between functions that process data in
“different” directions, e.g. range and pulse, in order to be able to calculate the Doppler channels further
in the processing pipeline. The process of corner turning becomes highly relevant when detailed time
behavior of the application is being derived or inferred, since it demands well-planned design decisions

14

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-Matrix.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-DSP.html

to make full use of the underlying architecture. At the level of abstraction on which we work right
now though, it is merely a matrix transpose operation, and it can very well be postponed until the
beginning of the next stage. However, a much more interesting operation is depicted in Figure 7: in order
to maximize the efficiency of the AESA processing the datapath is split into two concurrent processing
channels with 50% overlapped data.

Implementing such a behavior requires a bit of “ForSyDe thinking”. At a first glance, the problem seems
easily solved considering only the cube structures: just “ignore” half of the first cube of the right channel,
while the left channel replicates the input. However, there are some timing issues with this setup: from
the left channel’s perspective, the right channel is in fact “peaking into the future”, which is an abnormal
behavior. Without going too much into details, you need to understand that any type of signal “cleaning”,
like dropping or filtering out events, can cause serious causality issues in a generic process network, and
thus it is illegal in ForSyDe system modeling. On the other hand we could delay the left channel in
a deterministic manner by assuming a well-defined initial state (e.g. all zeroes) while it waits for the
right channel to consume and process its first half of data. This defines the history of a system where all
components start from time zero and eliminates any source of “clairvoyant”/ambiguous behavior.

To keep things simple, we stay within the same time domain, keeping the perfect synchrony assumption,
and instantiating the left channel building mechanism as a simple Mealy finite state machine. This
machine splits an input cube into two halves, stores one half and merges the other half with the previously
stored state to create the left channel stream of cubes.

overlap
nextState outDecode initState

SY.mealy

Figure 8: Left channel data builder process

283 overlap :: Signal (Window (Beam (Range CpxData)))
284 -> Signal (Window (Beam (Range CpxData)))
285 overlap = SY.mealy11 nextState outDecode initState
286 where
287 nextState _ cube = V.drop (nFFT `div` 2) cube
288 outDecode s cube = s <++> V.take (nFFT `div` 2) cube
289 initState = (V.fanoutn (nFFT `div` 2) . V.fanoutn nB . V.fanoutn nb) 0

Function Original module Package
mealy11 ForSyDe.Atom.MoC.SY forsyde-atom
drop, take, fanoutn, (<++>) ForSyDe.Atom.Skel.FastVector forsyde-atom
nFFT, nA, nB AESA.Params aesa-atom

OBS! Perhaps considering all zeroes for the initial state might not be the best design decision, since that
is in fact “junk data” which is propagated throughout the system and which alters the expected behavior.
A much safer (and semantically correct) approach would be to model the initial state using absent events
instead of arbitrary data. However this demands the introduction of a new layer and some quite advanced
modeling concepts which are out of the scope of this report2. For the sake of simplicity we now consider
that the initial state is half a cube of zeroes and that there are no absent events in the system. As earlier
mentioned, it is illegal to assume any type of signal cleaning during system modeling, however this law
does not apply to the observer (i.e. the testbench), who is free to take into consideration whichever
parts of the signals it deems necessary. We will abuse this knowledge in order to show a realistic output
behavior of the AESA signal processing system: as “observers”, we will ignore the effects of the initial
state propagation from the output signal and instead plot only the useful data.

2.2.2.4 Doppler Filter Bank (DFB)
2For more information on absent semantics, check out Chapter 3 of (Edward A. Lee and Seshia 2016)

15

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html

During the Doppler filter bank, every window of samples, associated with each range bin is transformed
into a Doppler channel and the complex samples are converted to real numbers by calculating their
envelope.

The dfb process applies the the following chain of functions on each window of complex samples, in three
consecutive steps:

• scale the window samples with a set of coefficients to decrease the Doppler side lobes from each
FFT output and thereby to increase the clutter rejection.

• apply an NFFT -point 2-radix decimation in frequency Fast Fourier Transform (FFT) algorithm.

• compute the envelope of each complex sample when phase information is no longer of interest. The
envelope is obtained by calculating the absolute value of the complex number, converting it into a
real number.

Function Original module Package
farm11,farm21 ForSyDe.Atom.Skel.FastVector forsyde-atom
fft ForSyDe.Atom.Skel.FastVector.DSP forsyde-atom
mkWeightCoefs AESA.Coefs aesa-atom
nS, nFFT AESA.Params aesa-atom

ra
ng
e
bi
ns

b
ea

m
s

pulse windowsbeam

NA

Nb

NFFT

ra
ng
e
bi
ns

b
ea

m
s

Doppler windowsbeam

NA

Nb

NFFT

⇒

Figure 9: Doppler Filter Bank on video structure

dfb

M.farm(fDFB)T

combSY

Figure 10: DFB process

346 dfb :: Signal (Window (Beam (Range CpxData)))
347 -> Signal (Beam (Range (Window RealData)))
348 dfb = SY.comb11 (M.farm11 fDFB . C.transpose)
349

350 fDFB :: Window CpxData -> Window RealData
351 fDFB = V.farm11 envelope . fft nS . weight
352 where
353 weight = V.farm21 (*) (mkWeightCoefs nFFT)
354 envelope a = let (i, q) = (realPart a, imagPart a)
355 in sqrt (i * i + q * q)

2.2.2.5 Constant False Alarm Ratio (CFAR)

16

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-DSP.html

The CFAR normalizes the data within the video cubes in order to maintain a constant false alarm rate
with respect to a detection threshold. This is done in order to keep the number of false targets at an
acceptable level by adapting the normalization to the clutter situation in the area (around a cell under
test) of interest. The described process can be depicted as in Figure 11 which suggests the stencil data
accessing pattern within the video cubes.

ra
ng
e
bi
ns

b
ea

m
s

Doppler windowsbeam

NA

Nb

NFFT

ra
ng
e
bi
ns

b
ea

m
s

Doppler windowsbeam

NA

Nb

NFFT

⇒

Figure 11: Constant False Alarm Ratio on cubes of complex samples

369 cfar :: Signal (Beam (Range (Window RealData)))
370 -> Signal (Beam (Range (Window RealData)))
371 cfar = SY.comb11 (V.farm11 fCFAR)

cfar

farm(fCFAR)

SY.comb

Figure 12: CFAR process

The cfar process applies the fCFAR function on every Nb ×NFFT matrix corresponding to each beam.
The fCFAR function normalizes each Doppler window, after which the sensitivity will be adapted to the
clutter situation in current area, as seen in Figure 13. The blue line indicates the mean value of maximum
of the left and right reference bins, which means that for each Doppler sample, a swipe of neighbouring
bins is necessary, as suggested by Figure 11. This is a typical pattern in signal processing called stencil,
which will constitute the main parallel skeleton within the fCFAR function.

a.

b.

Figure 13: The signal level within one pulse window: a) before CFAR; b) after CFAR

387 fCFAR :: Range (Window RealData) -> Range (Window RealData)

17

https://en.wikipedia.org/wiki/Stencil_code
https://en.wikipedia.org/wiki/Stencil_code

388 fCFAR rbins = V.farm41 (\m -> V.farm31 (normCfa m)) md rbins lmv emv
389 where
390 md = V.farm11 (logBase 2 . V.reduce min) rbins
391 emv = (V.fanoutn (nFFT + 1) dummy) <++> (V.farm11 aritMean neighbors)
392 lmv = (V.drop 2 $ V.farm11 aritMean neighbors) <++> (V.fanout dummy)
393 ---
394 normCfa m a l e = 2 ** (5 + logBase 2 a - maximum [l,e,m])
395 aritMean :: Vector (Vector RealData) -> Vector RealData
396 aritMean = V.farm11 (/n) . V.reduce addV . V.farm11 geomMean . V.group 4
397 geomMean = V.farm11 (logBase 2 . (/4)) . V.reduce addV
398 ---
399 dummy = V.fanoutn nFFT (-maxFloat)
400 neighbors = V.stencil nFFT rbins
401 ---
402 addV = V.farm21 (+)
403 n = fromIntegral nFFT

Function Original module Package
farm[4/3/1]1, reduce, <++>, ForSyDe.Atom.Skel.FastVector forsyde-atom
drop, fanout, fanoutn, stencil
comb11 ForSyDe.Atom.MoC.SY forsyde-atom
maxFloat AESA.Coefs aesa-atom
nb, nFFT AESA.Params aesa-atom

The fCFAR function itself can be described with the system of eq. 3, where

• MD is the minimum value over all Doppler channels in a batch for a specific data channel and
range bin.

• EMV and LMV calculate the early and respectively late mean values from the neighboring range
bins as a combination of geometric and arithmetic mean values.

• eb and lb are the earliest bin, respectively latest bin for which the CFAR can be calculated as EMV
and LMV require at least NFFT bins + 1 guard bin before and respectively after the current bin.
This phenomenon is also called the “stencil halo”, which means that CFAR, as defined in eq. 3 is
applied only on N ′b = Nb − 2NFFT − 2 bins.

• bins earlier than eb, respectively later than lb, are ignored by the CFAR formula and therefore their
respective EMV and LMV are replaced with the lowest representable value.

• 5 is added to the exponent of the CFAR equation to set the gain to 32 (i.e. with only noise in the
incoming video the output values will be 32).

CFAR(aij) = 2(5+log2 aij)−max(EMV (aij),LMV (aij),MD(aij))

EMV (aij) = 1
N

N−1∑
k=0

(
log2

(
1
4

3∑
l=0

a(i−2−4k−l)j

))

LMV (aij) = 1
N

N−1∑
k=0

(
log2

(
1
4

3∑
l=0

a(i+2+4k+l)j

))

MD(aij) = log2

(
N

min
k=1

(aik)
)

∀i ∈ [eb, lb], j ∈ [1, N] where

N = NFFT

eb = NFFT + 1
lb = Nb −NFFT − 1

(3)

The first thing we calculate is the MD for each Doppler window (row). For each row of rbins (i.e. range
bins of Doppler windows) we look for the minimum value (reduce min) and apply the binary logarithm

18

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html

on it.

Another action performed over the matrix rbins is to form two stencil “cubes” for EMV and LMV
respectively, by gathering batches of NFFT Doppler windows like in eq. 4, computing them like in eq. 5.

rbins
a11 a12 · · · a1NF F T

a21 a22 · · · a2NF F T

...
...

. . .
...

aNb1 aNb2 · · · aNbNF F T

stencil→

neighbors

 a11 a12 · · · a1NF F T

...
...

. . .
...

aNF F T 1 aNF F T 2 · · · aNF F TNF F T

 a21 a22 · · · a2NF F T

...
...

. . .
...

a(NF F T +1)1 a(NF F T +1)2 · · · a(NF F T +1)NF F T

...a(Nb−NF F T)1 a(Nb−NF F T)2 · · · a(Nb−NF F T)NF F T

...
...

. . .
...

aNb1 aNb2 · · · aNbNF F T

(4)

Each one of these neighbors matrices will constitute the input data for calculating the EMV and LMV
for each Doppler window. EMV and LMV are calculated by applying the mean function arithMean
over them, as shown (only for the window associated with the eb bin) in eq. 5. The resulting emv and
lmv matrices are padded with rows of the minimum representable value -maxFloat, so that they align
properly with rbins in order to combine into the 2D farm/stencil defined at eq. 3. Finally, fCFAR yields
a matrix of normalized Doppler windows. The resulting matrices are not transformed back into sample
streams by the parent process, but rather they are passed as single tokens downstream to the INT stage,
where they will be processed as such.

 a11 · · · a1NF F T

...
. . .

...
aNF F T 1 · · · aNF F TNF F T

 group→

a11 · · · a1NF F T

...
. . .

...
a41 · · · a4NF F T

...a(NF F T−4)1 · · · a(NF F T−4)NF F T

...
. . .

...
aNF F T 1 · · · aNF F TNF F T

farm(geomMean)→

 log2
1
4
∑4
i=1 ai1 · · · log2

1
4
∑4
i=1 aiNF F T

...
. . .

...
log2

1
4
∑NF F T

i=NF F T−4 ai1 · · · log2
1
4
∑NF F T

i=NF F T−4 aiNF F T

(/NFFT)◦reduce(+)→

[
EMV (aeb,1) · · · EMV (aeb,NF F T

)
]

(5)

2.2.2.6 Integrator (INT)

During the last stage of the video processing chain each data sample of the video cube is integrated
against its 8 previous values using an 8-tap FIR filter, as suggested by the drawing in Figure 14.

536 int :: Signal (Beam (Range (Window RealData)))
537 -> Signal (Beam (Range (Window RealData)))
538 -> Signal (Beam (Range (Window RealData)))
539 int right left = firNet mkIntCoefs $ SY.interleave2 right left

Before integrating though, the data from both the left and the right channel need to be merged and
interleaved. This is done by the process interleave below, which is a convenient utility exported by
the SY library, hiding a domain interface. When considering only the data structures, the interleave
process can be regarded as an up-sampler with the rate 2/1. When taking into consideration the

19

size of the entire data set (i.e. token rates × structure sizes × data size), we can easily see that
the overall required system bandwidth (ratio) remains the same between the PC and INT stages,
i.e. 2×NB×Nb×NF F T×size(RealData)

NB×Nb×NF F T×size(CpxData) = 1/1.

Function Original module Package
farm21,farm11,fanout ForSyDe.Atom.Skel.FastVector.Cube forsyde-atom
fir' ForSyDe.Atom.Skel.FastVector.DSP forsyde-atom
comb21,comb11, delay, interleave2 ForSyDe.Atom.MoC.SY forsyde-atom
mkFirCoefs AESA.Coefs aesa-atom

ra
ng
e
bi
ns

b
ea

m
s

windowbeam

bin

NA

N ′
b

NFFT

ra
ng
e
bi
ns

b
ea

m
s

windowbeam

bin

NA

N ′
b

NFFT

ra
ng
e
bi
ns

b
ea

m
s

windowbeam

bin

NA

N ′
b

NFFT

· · ·

8-tap FIR

Figure 14: Integration on cubes of complex samples

%

%

%

recur

farm

reduce

SY.interleave

firNet

· · ·

· · ·

· · ·

×c1

0

×c2

+

0

×c3

+

0

×cN

+

Figure 15: INT network

The 8-tap FIR filter used for integration is also a moving average, but as compared to the fir function
used in section 2.2.2.2, the window slides in time domain, i.e. over streaming samples rather than over
vector elements. To instantiate a FIR system we use the fir' skeleton provided by the ForSyDe-Atom
DSP utility libraries, which constructs the the well-recognizable FIR pattern in Figure 15, i.e. a recur-
farm-reduce composition. In order to do so, fir' needs to know what to fill this template with, thus we
need to provide as arguments its “basic” operations, which in our case are processes operating on signals
of matrices. In fact, fir itself is a specialization of the fir' skeleton, which defines its basic operations
as corresponding functions on vectors. This feature derives from a powerful algebra of skeletons which
grants them both modularity, and the possibility to transform them into semantically-equivalent forms,
as we shall soon explore in section 7.

577 firNet :: Num a => Vector a -> SY.Signal (Cube a) -> SY.Signal (Cube a)
578 firNet coefs = fir' addSC mulSC dlySC coefs
579 where
580 addSC = SY.comb21 (C.farm21 (+))
581 mulSC c = SY.comb11 (C.farm11 (*c))
582 dlySC = SY.delay (C.fanout 0)

20

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-Cube.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-DSP.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html

2.2.3 System Process Network

The AESA process network is formed by “plugging in” together all components instantiated in the
previous sections, and thus obtaining the system description in Figure 16. We do not transpose the output
data, because the Doppler windows are the ones we are interested in plotting as the innermost structures.

dbf
SY.comb

pc
SY.comb

dfb
SY.comb

dfb
SY.comb

overlap
SY.mealy

cfar
SY.comb

cfar
SY.comb

SY.interleave
firNet

.

int

Figure 16: The AESA process network instance

593 aesa :: Signal (Antenna (Window (Range CpxData)))
594 -> Signal (Beam (Range (Window RealData)))
595 aesa video = int rCfar lCfar
596 where
597 rCfar = cfar $ dfb oPc
598 lCfar = cfar $ dfb $ overlap oPc
599 oPc = pc $ dbf video

2.2.4 System Parameters

Here we define the size constants, for a simple test scenario. The size nA can be inferred from the size of
input data and the vector operations.

6 module AESA.Params where
7

8 nA = 16 :: Int
9 nB = 8 :: Int

10 nb = 1024 :: Int
11 nFFT = 256 :: Int
12 nS = 8 :: Int -- 2ˆnS = nFFT; used for convenience
13 pcTap = 5 :: Int -- number of FIR taps in the PC stage
14

15 freqRadar = 10e9 :: Float -- 10 Ghz X-band
16 waveLength = 3e8 / freqRadar
17 dElements = waveLength / 2
18 fSampling = 3e6 :: Float
19 pulseWidth = 1e-6 :: Float

2.2.5 Coefficient Generators

Here we define the vectors of coefficients used throughout the AESA design. We keep this module as
independent as possible from the main design and export the coefficients both as ForSyDe-Atom vectors
but also as Haskell native lists, so that other packages can make use of them, without importing the
whole ForSyDe-Atom chain.

8 module AESA.Coefs where

10 import ForSyDe.Atom.Skel.FastVector as V
11 import ForSyDe.Atom.Skel.FastVector.Matrix as M
12 import ForSyDe.Atom.Skel.FastVector.DSP
13 import Data.Complex

21

The mkBeamConst generator creates a matrix of αij beam constants used in the digital beamforming stage
section 6.1.2.1. These beam constants perform both phase shift and tapering according to eq. 6, where
ck performs tapering and ϕkl perform phase shifting. For tapering we use a set of Taylor coefficients
generated with our in-house utility taylor. The phase shift shall be calculated according to eq. 7, where
d is the distance between the antenna elements. θl is the angle between the wave front of the current
beam and normal of the antenna elements and λ is the wavelength of the pulse.

αkl = cke
jϕkl , ∀k ∈ [0, NA − 1], l ∈ [0, NB − 1] (6)

ϕkl = (k − 9.5) · 2π · d sin θ
λ

(7)

28 mkBeamConsts :: RealFloat a
29 => a -- ˆ distance between radar elements
30 -> a -- ˆ radar signal wavelength
31 -> Int -- ˆ Number of antenna elements
32 -> Int -- ˆ Number of resulting beams
33 -> Matrix (Complex a)
34 mkBeamConsts d lambda nA nB = M.farm21 mulScale taperingCf phaseShiftCf
35 where
36 -- all coefficients are normalized, i.e. scaled with 1/nA'
37 mulScale x y = x * y / nA'
38 -- tapering coefficients, c_k in Eq. (4)
39 taperingCf = V.farm11 (V.fanoutn nB) taylorCf
40 -- phase shift coefficients, eˆ(j*phi_kl) in Eqs.(4) and (5)
41 phaseShiftCf = V.farm11 (\k -> V.farm11 (mkCf k) thetas) antennaIxs
42 mkCf k theta_l = cis $ (k - 9.5) * 2 * pi * d * sin theta_l / lambda
43 --------------
44 -- Taylor series: nA real numbers; 4 nearly constant adjacent side lobes;
45 -- peak sidelobe level of -30dB
46 taylorCf = taylor nA 4 (-30)
47 -- theta_l spanning nB angles from 0 to pi
48 thetas = V.farm11 (\t -> pi/3 + t * (pi - 2*pi/3)/(nB'-1)) beamIxs
49 --------------
50 nA' = fromIntegral nA
51 nB' = fromIntegral nB
52 antennaIxs = vector $ map realToFrac [0..nA-1]
53 beamIxs = vector $ map realToFrac [0..nB-1]

55 -- Can be used without importing the ForSyDe.Atom libraries.
56 mkBeamConsts' :: RealFloat a => a -> a-> Int -> Int -> [[Complex a]]
57 mkBeamConsts' d l nA nB = map fromVector $ fromVector $ mkBeamConsts d l nA nB

Function Original module Package
farm11,farm21, fanout,
(from-)vector

ForSyDe.Atom.Skel.FastVector forsyde-atom

taylor ForSyDe.Atom.Skel.FastVector.DSP forsyde-atom

The mkPcCoefs generator for the FIR filter in section 6.1.2.2 is simply a n-tap Hanning window. It can
be changed according to the user requirements. All coefficients are scaled with 1/n so that the output
does not overflow a possible fixed point representation.

71 mkPcCoefs :: Fractional a => Int -> Vector a
72 mkPcCoefs n = V.farm11 (\a -> realToFrac a / realToFrac n) $ hanning n

Function Original module Package
hanning ForSyDe.Atom.Skel.FastVector.DSP forsyde-atom

22

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-DSP.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-DSP.html

78

79 -- Can be used without importing the ForSyDe.Atom libraries.
80 mkPcCoefs' :: Fractional a => Int -> [a]
81 mkPcCoefs' n = fromVector $ mkPcCoefs n

We use also a Hanning window to generate the complex weight coefficients for decreasing the Doppler
side lobes during DFB in section 2.2.2.4. This can be changed according to the user requirements.

87 mkWeightCoefs :: Fractional a => Int -> Vector a
88 mkWeightCoefs nFFT = V.farm11 realToFrac $ hanning nFFT

90 -- Can be used without importing the ForSyDe.Atom libraries.
91 mkWeightCoefs' :: Fractional a => Int -> [a]
92 mkWeightCoefs' nFFT = fromVector $ mkWeightCoefs nFFT

For the integrator FIR in section 6.1.2.5 we use a normalized square window.

96 mkIntCoefs :: Fractional a => Vector a
97 mkIntCoefs = vector mkIntCoefs'

99 -- Can be used without importing the ForSyDe.Atom libraries.
100 mkIntCoefs' :: Fractional a => [a]
101 mkIntCoefs' = [1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8]

103 -- The maximum floating point number representable in Haskell.
104 maxFloat :: Float
105 maxFloat = x / 256
106 where n = floatDigits x
107 b = floatRadix x
108 (_, u) = floatRange x
109 x = encodeFloat (bˆn - 1) (u - n)

2.3 Model Simulation Against Test Data

As a first trial to validate that our AESA high-level model is “sane”, i.e. is modeling the expected behavior,
we test it against realistic input data from an array of antennas detecting some known objects. For this
we have provided a set of data generator and plotter scripts, along with an executable binary created
with the CubesAtom module presented in section 2.2. Please read the project’s README file on how to
compile and run the necessary software tools.

The input data generator script replicates a situation in which 13 distinct objects, either near each other
or far apart, as seen in tbl. 12, are detected drowned into -18dB worth of noise by the 16 AESA antenna
elements (see section 2.2.4). In in Figure 17a can be seen a plot with the absolute values of the complex
samples in the first video indata cube, comprising of 16 antenna (pulse × range) matrices.

In Figure 17b a cube consisting of 8 beam (Doppler × range) matrices from the AESA signal processing
output is shown. We can see the 13 objects detected with different intensities across the 8 beams. As
they are all positioned at approximately the same angle relative to the antenna (i.e. π3 + 2(π − 2π

3)/7) we
can see the maximum correlation values are reflected in beam 2.

Table 12: Objects reflected in the generated AESA indata

Distance (m) Angle (θ) Rel. Speed (m/s) Rel. Power
1 12e3 π

3 + 2(π − 2π
3)/7 0.94 -6

2 13e3 π
3 + 2(π − 2π

3)/7 5 · 0.94 -6
3 14e3 π

3 + 2(π − 2π
3)/7 10 · 0.94 -6

4 15e3 π
3 + 2(π − 2π

3)/7 -0.94 -2
5 16e3 π

3 + 2(π − 2π
3)/7 -2 · 0.94 -2

6 17e3 π
3 + 2(π − 2π

3)/7 -3 · 0.94 -2
7 18e3 π

3 + 2(π − 2π
3)/7 -20 · 0.94 -4

8 19e3 π
3 + 2(π − 2π

3)/7 -23 · 0.94 -4
9 20e3 π

3 + 2(π − 2π
3)/7 -26 · 0.94 -4

23

Distance (m) Angle (θ) Rel. Speed (m/s) Rel. Power
10 21e3 π

3 + 2(π − 2π
3)/7 -29 · 0.94 -4

11 25e3 π
3 + 2(π − 2π

3)/7 -15 · 0.94 -2
12 25.4e3 π

3 + 2.1(π − 2π
3)/7 -15 · 0.94 -4

13 25.2e3 π
3 + 2.2(π − 2π

3)/7 -15 · 0.94 -3

0 50 100150200250

0

200

400

600

800

1000

antenna 0

0 50 100150200250

antenna 1

0 50 100150200250

antenna 2

0 50 100150200250

antenna 3

0 50 100150200250

antenna 4

0 50 100150200250

antenna 5

0 50 100150200250

antenna 6

0 50 100150200250

antenna 7

0 50 100150200250

antenna 8

0 50 100150200250

antenna 9

0 50 100150200250

antenna 10

0 50 100150200250

antenna 11

0 50 100150200250

antenna 12

0 50 100150200250

antenna 13

0 50 100150200250

antenna 14

50100150200

antenna 15

72

64

56

48

40

32

24

16

8

(a) Absolute values for one input video cube with antenna data

0 50 100 150 200 250

0

200

400

600

800

1000

6.3
6.7

60.6
91.0
64.8

14.5
23.3

17.8
20.7

86.0
37.5
18.6

beam 0

0 50 100 150 200 250

12.0
12.2

126.7
189.2
135.8

30.9
47.7

38.4
44.8

180.2
87.7
42.5

beam 1

0 50 100 150 200 250

6.5
13.2

13.4
144.3
215.4
156.2

35.2
53.1

43.7
51.4

205.3
103.0
49.7

beam 2

0 50 100 150 200 250

12.7
12.9

139.9
208.1
152.1

34.3
51.0

42.3
50.0

199.0
100.7
48.7

beam 3

0 50 100 150 200 250

12.7
12.9

139.9
208.1
152.1

34.3
51.0

42.3
50.0

199.0
100.7
48.7

beam 4

0 50 100 150 200 250

6.5
13.2

13.4
144.3
215.4
156.2

35.2
53.1

43.7
51.4

205.3
103.0
49.7

beam 5

0 50 100 150 200 250

12.0
12.2

126.7
189.2
135.8

30.9
47.7

38.4
44.8

180.2
87.7
42.5

beam 6

0 50 100 150 200 250

6.3
6.7

60.6
91.0
64.8

14.5
23.3

17.8
20.7

86.0
37.5
18.6

beam 7

(b) One output cube with radar data

Figure 17: AESA data plots

2.4 Conclusion

In this section we have shown how to write a fully-functional high-level model of an AESA radar signal
processing chain in ForSyDe-Atom. In the process we have exemplified basic modeling concepts such as
layers, process constructors and skeletons. For simplicity we have employed only two widely-used layers,
representing time (through the MoC layer) and parallelism (through the Skeleton layer) aspects in a
system. Within the MoC layer we used only the SY MoC capturing the passage of data (structures)
in a synchronous pipeline fashion. Within the Skeleton layer we used algorithmic skeletons on vector
data types to capture the inherent parallel interaction between elements, mainly to build algorithms
on cubes. As of Figure 3 from section 2.1, this layer setup is represented by right picture (processes of
skeleton functions). However in section 2.2.2.6 we have given “an appetizer” on how to instantiate regular,
parameterizable process network structures using the same skeletons, thanks to the concept of layers.

In section 6 we transform this model to capture some more refined notions of time and data passage, as
well as more complex use of skeletons and patterns, gradually reaching enough system details to start
considering the synthesis of the model in section 7 to a hardware platform. Until then we will introduce

24

an alternative modeling framework, as well as practical tools to verify the conformance of the ForSyDe
model and all its subsequent refinements to the given specification.

25

3 Alternative Modeling Framework: ForSyDe-Shallow

This section follows step-by-step the same approach as section 2, but this time using the
ForSyDe-Shallow modeling framework. The purpose is to familiarize the reader to the syntax
of ForSyDe-Shallow should the designer prefer it instead of ForSyDe-Atom. This section is
also meant to show that, except for minor syntactic differences, the same modeling concepts
are holding and the user experience and API design are very similar.

Package aesa-shallow-0.1.0 path: ./aesa-shallow/README.md
Deps forsyde-shallow-0.2.2 url:http://hackage.haskell.org/package/forsyde-shallow

forsyde-shallow-extensions-
0.1.1

path: ./forsyde-shallow-extensions/README.md

aesa-atom-0.1.1 path: ./aesa-atom/README.md
Bin aesa-shallow usage: aesa-shallow --help

ForSyDe-Shallow is the flagship and the oldest modeling language of the ForSyDe methodology (Sander
and Jantsch 2004). It is a domain specific language (DSL) shallow-embedded into the functional
programming language Haskell and uses the host’s type system, lazy evaluation mechanisms and the
concept of higher-order functions to describe the formal modeling framework defined by ForSyDe. At the
moment of writing this report, ForSyDe-Shallow is the more “mature” counterpart of ForSyDe-Atom.
Although some practical modeling concepts such as layers, patterns and skeletons have been originally
developed within ForSyDe-Atom, they are now well-supported by ForSyDe-Shallow as well. In the future
the modeling frameworks such as ForSyDe-Atom and ForSyDe-Shallow are planned to be merged into a
single one incorporating the main language features of each one and having a similar user experience as
ForSyDe-Shallow.

3.1 The High-Level Model

The behavioral model of this section is exactly the same as the one presented in in section 2.2, and thus
we will not go through all the details of each functional block, but rather list the code and point out the
syntax differences.

The code for this section is written in the following module, see section 1.2 on how to use it:

10 {-# LANGUAGE PackageImports #-} -- you can ignore this line for now

The code for this section is written in the following module, see section 1.2 on how to use it:

15 module AESA.CubesShallow where

3.1.1 Imported Libraries

The first main difference between ForSyDe-Shallow and ForSyDe-Atom becomes apparent when importing
the libraries: ForSyDe-Shallow does not require to import as many sub-modules as its younger counterpart.
This is because the main library ForSyDe.Shallow exports all the main language constructs, except for
specialized utility blocks, so the user does not need to know where each function is placed.

26 import ForSyDe.Shallow

For the AESA model we make use of such utilities, such as n-dimensional vectors (i.e. matrices, cubes)
and DSP blocks, thus we import our local extended ForSyDe.Shallow.Utilities library.

33 -- | explicit import from extensions package. Will be imported
34 -- normally once the extensions are merged into forsyde-shallow
35 import "forsyde-shallow-extensions" ForSyDe.Shallow.Core.Vector
36 import "forsyde-shallow-extensions" ForSyDe.Shallow.Utility

Finally, we import Haskell’s Complex type, to represent complex numbers.

42 import Data.Complex

26

https://forsyde.github.io/forsyde-shallow/
http://hackage.haskell.org/package/forsyde-shallow
http://hackage.haskell.org/package/forsyde-shallow-3.4.0.0/docs/ForSyDe-Shallow-Utility.html
http://hackage.haskell.org/package/base/docs/Data-Complex.html

To keep the model consistent with the design in section 2.2 we import the same parameters and coefficient
generator functions from the aesa-atom package, as presented in sections 2.2.4, 2.2.5.

48 import AESA.Params
49 import AESA.CoefsShallow -- wraps the list functions exported by 'AESA.Coefs' into
50 -- 'ForSyDe.Shallow' data types.

3.1.2 Type Synonyms

We use the same (local) aliases for types representing the different data structure and dimensions.

57 type Antenna = Vector -- length: nA
58 type Beam = Vector -- length: nB
59 type Range = Vector -- length: nb
60 type Window = Vector -- length: nFFT
61 type CpxData = Complex Float
62 type RealData = Float

3.1.3 Video Processing Pipeline Stages

This section follows the same model as section 2.2.2 using the ForSyDe-Shallow modeling libraries. The
digital beamforming (DBF) block presented in section 2.2.2.1 becomes:

70 dbf :: Signal (Antenna (Window (Range CpxData)))
71 -> Signal (Window (Range (Beam CpxData)))
72 dbf = combSY (mapMat fDBF . transposeCube)
73

74 fDBF :: Antenna CpxData -- ˆ input antenna elements
75 -> Beam CpxData -- ˆ output beams
76 fDBF antennas = beams
77 where
78 beams = reduceV (zipWithV (+)) beamMatrix
79 beamMatrix = zipWithMat (*) elMatrix beamConsts
80 elMatrix = mapV (copyV nB) antennas
81 beamConsts = mkBeamConsts dElements waveLength nA nB

The second main difference between the syntax of ForSyDe-Shallow and ForSyDe-Atom can be noticed
when using the library functions, such as process constructors: function names are not invoked with their
module name (alias), but rather with a suffix denoting the type they operate on, e.g. transposeCube is
the equivalent of C.transpose. Another difference is that constructors with different numbers of inputs
and outputs are not differentiated by a two-number suffix, but rather by canonical name, e.g. combSY is
the equivalent of SY.comb11. Lastly, you might notice that some function names are completely different.
That is because ForSyDe-Shallow uses names inspired from functional programming, mainly associated
with operations on lists, whereas ForSyDe-Atom tries to adopt more suggestive names with respect to the
layer of each design component and its associated jargon, e.g. mapMat is the equivalent of M.farm11, or
zipWithV is equivalent with V.farm21.

We go further with the description of the pulse compression (PC) block, as described previously in
section 2.2.2.1 becomes. The same variation in naming convention can be noticed, but the syntax is still
the same.

101 pc :: Signal (Window (Range (Beam CpxData)))
102 -> Signal (Window (Beam (Range CpxData)))
103 pc = combSY (mapV (mapV fPC . transposeMat))
104

105 fPC :: Range CpxData -- ˆ input range bin
106 -> Range CpxData -- ˆ output pulse-compressed bin
107 fPC = mav (mkPcCoefs 5)

27

The same goes for overlap state machine use in the corner turn (CT) stage, as well as the Doppler
filter bank (DFB) and the constant false alarm ratio (CFAR) stages from sections 2.2.2.3, 2.2.2.4, 2.2.2.5
respectively.

113 overlap :: Signal (Window (Beam (Range CpxData)))
114 -> Signal (Window (Beam (Range CpxData)))
115 overlap = mealySY nextState outDecode initState
116 where
117 nextState _ cube = dropV (nFFT `div` 2) cube
118 outDecode s cube = s <+> takeV (nFFT `div` 2) cube
119 initState = copyCube nb nB (nFFT `div` 2) 0

123 dfb :: Signal (Window (Beam (Range CpxData)))
124 -> Signal (Beam (Range (Window RealData)))
125 dfb = combSY (mapMat fDFB . transposeCube)
126

127 fDFB :: Window CpxData -> Window RealData
128 fDFB = mapV envelope . onComplexFloat (fft nFFT) . weight
129 where
130 weight = zipWithV (*) (mkWeightCoefs nFFT)
131 envelope a = let (i, q) = (realPart a, imagPart a)
132 in realToFrac $ sqrt (i * i + q * q)
133 onComplexFloat f = mapV (fmap realToFrac) . f . mapV (fmap realToFrac)

The fft function from ForSyDe-Shallow is provided as a monomorphic utility function, and not necessarily
as a skeleton. This is why, although slightly more efficient, it is not as flexible as the skeleton counterpart,
and thus we need to wrap it inside our custom data type converter onComplexFloat to be able to “plug
it” into our system, i.e. there are no data type mismatches.

141 cfar :: Signal (Beam (Range (Window RealData)))
142 -> Signal (Beam (Range (Window RealData)))
143 cfar = combSY (mapV fCFAR)
144

145 fCFAR :: Range (Window RealData) -> Range (Window RealData)
146 fCFAR rbins = zipWith4V (\m -> zipWith3V (normCfa m)) md rbins lmv emv
147 where
148 md = mapV (logBase 2 . reduceV min) rbins
149 emv = (copyV (nFFT + 1) dummy) <+> (mapV aritMean neighbors)
150 lmv = (dropV 2 $ mapV aritMean neighbors) <+> (copyV (nFFT*2) dummy)
151 ---
152 normCfa m a l e = 2 ** (5 + logBase 2 a - maximum [l,e,m])
153 aritMean = mapV (/n) . reduceV addV . mapV geomMean . groupV 4
154 geomMean = mapV (logBase 2 . (/4)) . reduceV addV
155 ---
156 dummy = copyV nFFT (-maxFloat)
157 neighbors = stencilV nFFT rbins
158 ---
159 addV = zipWithV (+)
160 n = fromIntegral nFFT

For the integration stage (INT) presented in section 2.2.2.3 we extended the ForSyDe.Shallow.Utility
library with a fir' skeleton and an interleaveSY process, similar to the ones developed for ForSyDe-
Atom3. Thus we can implement this stage exactly as before:

167 int :: Signal (Beam (Range (Window RealData)))
168 -> Signal (Beam (Range (Window RealData)))
169 -> Signal (Beam (Range (Window RealData)))
170 -- int r l = firNet $ interleaveSY r l

3at this moment it is enough to know that both are implemented in terms of existing skeletons or process constructors.
More complex behaviors such as these two will be made explicit later in section 6. Interested readers can consult the
implementations in the forsyde-shallow-extensions package.

28

171 -- where
172 -- firNet = zipCubeSY . mapCube (firSY mkIntCoefs) . unzipCubeSY
173 int r l = fir' addSC mulSC dlySC mkIntCoefs $ interleaveSY r l
174 where
175 addSC = comb2SY (zipWithCube (+))
176 mulSC c = combSY (mapCube (*c))
177 dlySC = delaySY (repeatCube 0)

Function Original module Package
mapV, zipWith, zipWith[4/3], ForSyDe.Shallow.Core.Vector forsyde-shallow
reduceV, lengthV, dropV, takeV,
copyV, (<+>), stencilV
mapMat, zipWithMat, transposeMat ForSyDe.Shallow.Utility.Matrix forsyde-shallow
transposeCube ForSyDe.Shallow.Utility.Cube forsyde-shallow-

extensions
fir ForSyDe.Shallow.Utility.FIR forsyde-shallow
fft ForSyDe.Shallow.Utility.DFT forsyde-shallow
mav ForSyDe.Shallow.Utility.DSP forsyde-shallow-

extensions
combSY, comb2SY, mealySY, delaySY ForSyDe.Shallow.MoC.Synchronous forsyde-shallow
interleaveSY ForSyDe.Shallow.Utility forsyde-shallow-

extensions
mkBeamConsts,mkPcCoefs, AESA.Coefs aesa-atom
mkWeightCoefs, mkFirCoefs, maxFloat
dElements, waveLength, nA, nB AESA.Params aesa-atom
nFFT, nb

3.1.4 The AESA Process Network

The process network is exactly the same as the one in section 2.2, but instantiating the locally defined
components.

203 aesa :: Signal (Antenna (Window (Range CpxData)))
204 -> Signal (Beam (Range (Window RealData)))
205 aesa video = int rCfar lCfar
206 where
207 rCfar = cfar $ dfb oPc
208 lCfar = cfar $ dfb $ overlap oPc
209 oPc = pc $ dbf video

3.2 Model Simulation Against Test Data

Similarly to the ForSyDe-Atom implementation, we have provided a runner to compile the model defined
in section 2.2 within the AESA.CubesShallow module into an executable binary, in order to tests that it
is sane. The same generator an plotter scripts can be used with this binary, so please read the project’s
README file on how to compile and run the necessary software tools.

We use the same generated input data reflecting the 13 objects from tbl. 12, plotted in Figure 17a. This
time the AESA radar processing output shows the picture in Figure 18.

Comparing Figure 18 with Figure 17b one can see that the same objects have been identified, albeit with
slightly different correlation values. This is because we use single-precision floating point Float as the
base number representation in our model, which are well-known to be very sensitive to slight variations
in arithmetic operations, as far as the order of evaluation is concerned. The output data graphs reflect
the fact that ForSyDe-Shallow and ForSyDe-Atom have different implementation, but that is the only
conclusion that can be drawn from this.

29

http://hackage.haskell.org/package/forsyde-shallow-3.4.0.0/docs/ForSyDe-Shallow-Core-Vector.html
http://hackage.haskell.org/package/forsyde-shallow-3.4.0.0/docs/ForSyDe-Shallow-Utility-Matrix.html
http://hackage.haskell.org/package/forsyde-shallow-3.4.0.0/docs/ForSyDe-Shallow-Utility-FIR.html
http://hackage.haskell.org/package/forsyde-shallow-3.4.0.0/docs/ForSyDe-Shallow-Utility-DFT.html
http://hackage.haskell.org/package/forsyde-shallow-3.4.0.0/docs/ForSyDe-Shallow-MoC-Synchronous.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

0 50 100 150 200 250

0

200

400

600

800

1000

6.3
6.7

60.6
91.0
64.8

14.5
23.3

17.8
20.7

86.0
37.5
18.6

beam 0

0 50 100 150 200 250

12.0
12.2

126.7
189.2
135.8

30.9
47.7

38.4
44.8

180.2
87.7
42.5

beam 1

0 50 100 150 200 250

6.5
13.2

13.4
144.3
215.4
156.2

35.2
53.1

43.7
51.4

205.3
103.0
49.7

beam 2

0 50 100 150 200 250

12.7
12.9

139.9
208.1
152.1

34.3
51.0

42.3
50.0

199.0
100.7
48.7

beam 3

0 50 100 150 200 250

12.7
12.9

139.9
208.1
152.1

34.3
51.0

42.3
50.0

199.0
100.7
48.7

beam 4

0 50 100 150 200 250

6.5
13.2

13.4
144.3
215.4
156.2

35.2
53.1

43.7
51.4

205.3
103.0
49.7

beam 5

0 50 100 150 200 250

12.0
12.2

126.7
189.2
135.8

30.9
47.7

38.4
44.8

180.2
87.7
42.5

beam 6

0 50 100 150 200 250

6.3
6.7

60.6
91.0
64.8

14.5
23.3

17.8
20.7

86.0
37.5
18.6

beam 7

Figure 18: One output cube with radar data

3.3 Conclusion

In this section we have presented an alternative implementation of the AESA signal processing high-level
model in the ForSyDe-Shallow modeling framework. We have deliberately implemented the same model
in order to highlight the API differences between ForSyDe-Atom and ForSyDe-Shallow.

The next sections will only use ForSyDe-Atom as the main modeling framework, however users should
hopefully have no trouble switching between their modeling library of choice. The insights in the API of
ForSyDe-Shallow will also be useful in section 7 when we introduce ForSyDe-Deep, since the latter has
similar constructs.

30

4 Modeling the Radar Environment

In this section we model the input signals describing the radar environment, containing analog
information about reflected objects, respectivey the digital acquisition of those signals. The
purpose of this section is to introduce new modeling “tools” in ForSyDe-Atom: the continuous
time (CT) MoC for describing signals that evolve continuously in time, and a new layer, the
Probability layer, for describing random values which are distributed with a certain probability.
This section can be read independently from the rest.

Package aesa-atom-0.3.1 path: ./aesa-atom/README.md
Deps forsyde-atom-0.2.2 url: https://forsyde.github.io/forsyde-atom/api/
Bin aesa-atom usage: aesa-atom -g[NUM] -d (see --help)

The Probability layer and the CT MoC are highlights of the functional implementation of ForSyDe-Atom.
Both are represented by paradigms which describe dynamics over continuous domains. However computers,
being inherently discrete machines, cannot represent continuums, hence any computer-aided modeling
attempt is heavily dependent on numerical methods and discrete “interpretations” of continuous domains
(e.g. sampled data). In doing so, we are not only forcing to alter the problem, which might by analytical
in nature to a numerical one, but might also unknowingly propagate undesired and chaotic behavior
given rise by the fundamental incompatibilities of these two representations. The interested reader is
strongly advised to read recent work on cyber-physical systems such as (Edward A Lee 2016; Bourke and
Pouzet 2013) to understand these phenomenons.

Being computer programs ForSyDe-Atom models are still dependent on numerical representations, however
ForSyDe-Atom deals with this by simply abstracting away the continuous domain (e.g. time) as a function
argument. Therefore during modeling, any trasformation can be described as a composition of pure
functions. The numerical representation of the domain becomes apparent only at the end, when a model
is being evaluated, e.g. when a signal is being plotted, in which case the pure function resulted from
a chain of transformations is being evaluated for a certain experiment. This principle is depicted in
Figure 19, and is enforced by the host language’s (i.e.e Haskell’s) lazy evaluation mechanism.

0 5 10
−1

0

1

Continuous signals

0 1 2 3 4 5 6 7 8 9

Sampled signals

0 1 2 3 4 5 6 7 8 9

Product of sampled signals

0 5 10
−1

0

1

Continuous signals

0 5 10
−1

0

1

Product of continuous signals

0 1 2 3 4 5 6 7 8 9

Sampling of signal product

Figure 19: The difference between transforming initially sampled data (above) and sampling transformed
pure functions during plotting/trancing (below)

In ForSyDe-Atom, CT is defined in the MoC layer, and is describing (discrete) timed interactions between
continuous sub-signals. Implementation details and example usage are found at (Ungureanu, Medeiros,
and Sander 2018). In CT signals each event is described by a discrete tag and a function of time: the
tags describe a simple algebra of discrete interactions, whereas event interactions themselves are simply
function compositions.

In probability theory on the other hand, an observed value is described by a certain distribution
(e.g. normal, uniform), which is a function of a random experiment. Similarly to the CT MoC, the
Probability layer represents values by their “recipe” to achieve a desired distribution, whereas the algebra

31

defined by this layer is describing the composition of such recipes. When we need to evaluate a system
though, e.g. to plot/trace the behavior, we need to feed the transformed recipe with a (pseudo)-random
seed in order to obtain an experimental value.

The radar environment model is found in the AESA.Radar module in aesa-atom package. This module
is by default bypassed by the AESA signal processing executable, but if invoked manually, it recreates
the AESA radar input for the same 13 object reflections seen in Figure 17a, and feeds this input to the
AESA signal processing chain. The functions generating this data are presented as follows.

8 {-# LANGUAGE FlexibleInstances, TypeSynonymInstances #-}
9 module AESA.Radar where

For this model we import the following MoC libraries: CT defines discrete interactions between continuous
sub-domains, DE defines the discrete event MoC, which in this case is only used as a conduit MoC, and SY
which defines the synchronous reactive MoC, on which the AESA signal processing chain operates. From
the Skeleton layer we import Vector. From the Probability layer we import the Normal distribution
to represent white noise.

29 import qualified ForSyDe.Atom.MoC.Time as T
30 import ForSyDe.Atom.MoC.CT as CT
31 import ForSyDe.Atom.MoC.DE as DE
32 import ForSyDe.Atom.MoC.SY as SY
33 import ForSyDe.Atom.Skel.FastVector as V
34 import ForSyDe.Atom.Prob.Normal as N

Other necessary utilities are also imported.

38 import AESA.Params
39 import Data.Complex
40 import System.Random

Since we model high frequency signals, we want to avoid unnecessary quantization errors when representing
time instants, therefore we choose a more appropriate representation for timestamps, as Rational numbers.
We thus define two aliases CTSignal and DESignal to represent CT respectively DE signals with Rational
timestamps.

49 type CTSignal a = CT.SignalBase Time Time a
50 type DESignal a = DE.SignalBase Time a

4.1 Object Reflection Model

The beamforming principle, illustrated in Figure 20 and briefly presented in section 2.2.2.1 allows to
extract both distance and speed information by cross-checking the information carried by a reflection
signal as seen by multiple antenna elements.

Figure 20: Antenna Beamforming

According to basic radar principles, an object is detected by sending carrier pulse wave (usually in GHz
band, pulse width w, period p), and decoding the cumulative information from the returning signal, such
as reflection time r or phase modulation φ. In an AESA radar, the constructive interference created
by multiple simultaneous detections (see Figure 20) infers information about direction or speed. Each

32

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-CT.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-DE.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skeleton.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skeleton-Vector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Probability.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Probability-Normal.html
http://hackage.haskell.org/package/base-4.14.0.0/docs/Data-Ratio.html#t:Rational

Figure 21: The geometry for beamforming calculations

antenna element is extracting phase information as complex numbers I + iQ where I = A cos(φt) and
Q = A sin(φt), which are then samples them and stores them into range bins, like in Figure 22.

A sin(ωt+ φ)

×
2 sin(ωt)

LP filter ADC
I = A cosφ

×
2 cos(ωt)

LP filter ADC
Q = A sinφ

Figure 22: Extracting the phase information

We model the radar environment by recreating, in CT domain, the image of signals reflected by arbitrary
objects, as perceived by every antenna element. Since many of the calculations are time-dependent, we
need a high precision for the number representation. Therefore, as with the time representation, the
coefficients representing the radar physics need to be defined as rationals (and not just converted), hence
we define ' alternatives to the coefficients in AESA.Params.

78 freqRadar' = 10e9 :: Rational
79 waveLength' = 3e8 / freqRadar'
80 dElements' = waveLength' / 2
81 fSampling' = 3e6 :: Rational
82 pulseWidth' = 1e-6 :: Rational
83 sampPeriod' = 1 / fSampling' :: Rational
84 pulsePeriod' = sampPeriod' * realToFrac nb

We approach modeling of the object reflection signals from two perspectives: the first one is a simple
“translation” of a numerical program, e.g. written in Matlab or Python, where we only abstract away the
time representation as a function argument; the second one is a more proper description of the signal
transformations and interactions through CT processes.

4.1.1 Approach 1: Translating a Numerical Program

In this approach we simply translate the Python script used to generate the AESA radar indata for the
previous sections, included in this project source files. We do this in order to familiarize with the concept
of continuum in ForSyDe as simply functions over (an abstract representation of) time. This way any
numerical program can become a CT signal by defining it as a function which exposes the time variable t
as an argument and passes it to an infinite signal generator.

The following function describes the value in time of the impulses reflected from a specific object with
certain characteristics (see arguments list).

105 reflectionFunc :: Float -- ˆ initial phase, random between [0,2pi)
106 -> Float -- ˆ object distance from radar, in meters
107 -> Float -- ˆ θ, angle relative to the radar element
108 -> Float -- ˆ relative speed in m/s. Positive speed means approaching object

33

109 -> Integer -- ˆ signal power
110 -> Int -- ˆ index of the antenna element in [0..nA]
111 -> T.Time -- ˆ Abstract time representation. Evaluated only when plotting
112 -> Complex Float -- ˆ Value of reflection signal for an antenna element (t)
113 reflectionFunc phi distance angle relativeSpeed signalPower chanIx t
114 | range_bin >= trefl_start && range_bin <= trefl_stop && not crossing_reflection = value
115 | not (range_bin >= trefl_start && range_bin <= trefl_stop) && crossing_reflection = value
116 | otherwise = 0
117 where
118 i' = realToFrac chanIx
119 t' = realToFrac t
120

121 -- wd is 2*pi*doppler frequency
122 wd = 2 * pi * relativeSpeed / waveLength
123

124 -- A is the power of the reflected signal (-5 => 1/32 of fullscale)
125 bigA = 2 ˆˆ signalPower
126

127 -- Large distances will fold to lower ones, assume infinite sequences
128 -- Otherwise the the first X pulses would be absent
129 trefl_start = ceiling ((2 * distance / 3e8) * fSampling) `mod` nb
130 trefl_stop = ceiling ((2 * distance / 3e8 + pulseWidth) * fSampling) `mod` nb
131 range_bin = ceiling (t' * fSampling) `mod` nb
132

133 -- Handling for distances at the edge of the
134 crossing_reflection = trefl_stop < trefl_start
135

136 -- Models the delay between the first antenna element and the current one
137 channelDelay = (-1) * i' * pi * sin angle
138 bigI = bigA * cos (wd * t' + phi)
139 bigQ = (-1) * bigA * sin (wd * t' + phi)
140 value = (bigI :+ bigQ) * (cos channelDelay :+ sin channelDelay)

The reflectionFunc function is then passed to a CT.infinite1 process constructor which generates an
infinite signal. The object reflection on all antennas in a AESA system is constructed with a V.farm11
skeleton, which instantiates each signal generator characteristic function according to its antenna index.

144 objectReflection :: Float -> Float -> Float -> Float -> Integer
145 -> Vector (CTSignal (Complex Float))
146 objectReflection radix distance angle relativeSpeed power
147 = V.farm11 channelRefl (vector [0..nA-1])
148 where phi_start = 2 * pi * radix / 360
149 channelRefl i = CT.infinite1
150 (reflectionFunc phi_start distance angle relativeSpeed power i)

4.1.2 Approach 2: CT Signal Generators

The second approach combines two CT signals to create the reflection model: a pulse width modulation
(PWM) signal modeling the radar pulses, and an envelope signal containing the object’s phase information
I + iQ as a function of time, like in Figure 22. The envelope function is shown below. Observe that it
only describes angle and relative speed, but not distance, since the distance is a function of the reflection
time.

161 reflectionEnvelope :: Float -- ˆ initial phase, random between [0,2pi)
162 -> Float -- ˆ θ, angle relative to the radar element
163 -> Float -- ˆ relative speed in m/s. Positive speed means approaching object
164 -> Integer -- ˆ signal power
165 -> Int -- ˆ index of the antenna element in [0..nA]
166 -> T.Time -- ˆ Abstract time representation. Evaluated only when plotting

34

167 -> Complex Float -- ˆ envelope for one antenna element
168 reflectionEnvelope phi angle relativeSpeed power chanIdx t
169 = (bigI :+ bigQ) * (cos channelDelay :+ sin channelDelay)
170 where
171 -- convert integer to floating point
172 i' = realToFrac chanIdx
173 -- convert "real" numbers to floating point (part of the spec)
174 t' = realToFrac t
175

176 -- wd is 2*pi*doppler frequency
177 wd = 2 * pi * relativeSpeed / waveLength
178

179 -- A is the power of the reflected signal (-5 => 1/32 of fullscale)
180 bigA = 2 ˆˆ power
181

182 channelDelay = (-1) * i' * pi * sin angle
183 bigI = bigA * cos (wd * t' + phi)
184 bigQ = (-1) * bigA * sin (wd * t' + phi)

1 w p

DE.pwm

(I + iQ)(t)

CT.infinite

%

objectReflectionfarm

s1 s2 s3

s′

Re(s′)

s3

s2 0 1 0 1

s1 1 0 1 0

prw

×

NA

Figure 23: Modeling an object reflection signal in all channels

The reflection signal in a channel is modeled like in Figure 23 as the product between a PWM signal
and an envelope generator. The pwm generator is a specialized instance of a DE.state11 process, and the
reflection time r is controlled with a DE.delay process. DE.hold1 is a MoC interface which transforms a
DE signal into a CT signal of constant sub-signals (see s3 in Figure 23).

194 channelReflection' :: Float -> Float -> Float -> Float -> Integer
195 -> Int -> CTSignal (Complex Float)
196 channelReflection' phi distance angle relativeSpeed power chanIndex
197 -- delay the modulated pulse reflections according to the object distance.
198 -- until the first reflection is observed, the signal is constant 0
199 = CT.comb21 (*) pulseSig (modulationSig chanIndex)
200 where
201 -- convert floating point numbers to timestamp format
202 distance' = realToFrac distance
203

204 -- reflection time, given as timestamp
205 reflTime = 2 * distance' / 3e8
206

207 -- a discrete (infinite) PWM signal with amplitude 1, converted to CT domain
208 pulseSig = DE.hold1 $ DE.delay reflTime 0 $ DE.pwm pulseWidth' pulsePeriod'
209

210 -- an infinite CT signal describing the modulation for each channel
211 modulationSig = CT.infinite1 . reflectionEnvelope phi angle relativeSpeed power

Finally, we describe an object reflection in all channels similarly to the previous approach, namely as a
farm of channelReflection processes.

216 objectReflection' :: Float -> Float -> Float -> Float -> Integer
217 -> Vector (CTSignal (Complex Float))
218 objectReflection' radix distance angle relativeSpeed power

35

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-DE.html#v:state22
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-DE.html#v:delay

219 = V.farm11 channelRefl (vector [0..nA-1])
220 where phi_start = 2 * pi * radix / 360
221 channelRefl =
222 channelReflection' phi_start distance angle relativeSpeed power

Both approaches 1 and 2 are equivalent. The reader is free to test this statement using whatever method she
chooses, but for the sake of readability we will only use approach 2 from now on, i.e. objectReflection'.

4.2 Sampling Noisy Data. Using Distributions.

Multiple reflected objects are described as a vector of vectors of complex CT signals, each originating
from its corresponding objectReflection' farm. To obtain the composite signal from multiple object
reflections we sum-reduce all object reflection models, like in Figure 24.

reduce

farm

obj 1

obj 2

objn

. . .
...

vi
d
eo

+

+

+

+ N (σ)

Figure 24: Video indata acquisition model

237 reflectionMix :: Vector (Vector (CTSignal (Complex Float)))
238 -> Vector (CTSignal (Complex Float))
239 reflectionMix = (V.reduce . V.farm21 . CT.comb21) (+)

!

"0

1

−1

0 1.57 3.14 4.71 6.28 7.85

0.0 3.14 6.28

0 1 0 -1 00

0.0 3.14 6.28

sample

Figure 25: Ideal ADC model

The next step is to sample the CT signals using an analog/digital converter (ADC) model. An ADC is
characterized by:

1. a sampling rate, whose principle is illustrated in Figure 25. In our case we describe a CT/SY MoC
interface as a serialization of CT/DE and DE/SY interfaces.

2. an additive white noise for each channel. White noise is a side-effect of the physical environment,
and any sampled value is randomly-dependent on a particular experiment/observation. To describe
random distributions in a pure setting, we wrap the object reflection SY samples into a N.normal
recipe for generating normally-distributed observations with a standard deviation dependent on the
power of the noise.

The N.normal wrapper is a function describing a Gaussian distribution, in our case the Box-Muller
method to transform uniform distributions, and is dependent on a (pseudo-)random number generator,
in our case StdGen. A StdGen is acquired outside the model as an IO action and is only passed to the
model as an argument. By all means, these recipes (pure functions of “random seeds”) can be propagated
and transformed throughout the AESA model, exactly in the same way as CT signals (pure functions of
“time”), using atoms and patterns from to the Probability layer. However, for the scope of this model
we sample these distributions immediately, because the AESA system is expecting numbers as video
indata, not distributions. Hence our ADC model looks as follows:

36

https://hackage.haskell.org/package/random-1.1/docs/System-Random.html#t:StdGen

268 adc :: Integer -- ˆ noise power
269 -> DESignal () -- ˆ global ADC sampler signal. Defines sampling rate
270 -> SY.Signal StdGen -- ˆ signal of random generators used as "seeds"
271 -> CTSignal (Complex Float) -- ˆ pure CT signal
272 -> SY.Signal (Complex Float) -- ˆ noisy, sampled/observed SY signal
273 adc noisePow sampler seeds = probeSignal . addNoise . sampleAndHold
274 where
275 sampleAndHold = snd . DE.toSY1 . CT.sampDE1 sampler
276 addNoise = SY.comb11 (N.normal (2ˆˆnoisePow))
277 probeSignal = SY.comb21 N.sample seeds

The full acquisition model for the AESA signal processing system in Figure 24 is thus the following, where
each CT signal vector is generated with a specific instance of objectReflection'.

283 videoInData :: Integer -- ˆ noise power
284 -> Vector (SY.Signal StdGen) -- ˆ random seeds for sampling
285 -> Vector (Vector (CTSignal (Complex Float))) -- ˆ reflections for all objects
286 -> Vector (SY.Signal (Complex Float)) -- ˆ video Indata
287 videoInData noisePow seeds reflections = inData
288 where
289 mixedRefl = reflectionMix reflections
290 inData = V.farm21 (adc noisePow sampler) seeds mixedRefl
291 sampler = DE.generate1 id (sampPeriod', ()) -- global ADC trigger

The following code can be safely ignored. It enables to generate random Complex numbers, because their
respective Haskell library does not define this instance.

295 instance Random (Complex Float) where
296 randomR (lo,hi) g = let (i,g') = randomR (realPart lo, realPart hi) g
297 (q,g'') = randomR (imagPart lo, imagPart hi) g'
298 in (i:+q, g'')
299 random g = let (i,g') = random g
300 (q,g'') = random g'
301 in (i:+q, g'')

4.3 Conclusions

We have introduced a new MoC for describing continuous dynamics as functions of time, and a new layer
for describing probability distributions as functions of a random number generator. Both have in common
the fact that they represent models as pure functions by virtue of the functional programming host,
Haskell, in which functions are first class citizens. This way their model remains mathematical and pure,
by abstracting away their machine implementation, i.e. time representation, respectively pseudo-random
number generator, these aspects becoming apparent only when sampling and tracing a simulation.

Using these new EDSLs, we have described the radar environment for a certain simulation scenario, by
modeling the object reflection dynamics as continuous signals, drowned in white noise. When generating
and dumping the generated antenna samples, we obtain a similar picture to the one in Figure 17a,
respectively the AESA processed output looks similar to Figure 17b.

37

5 Validating a ForSyDe Model Against the Specification

This section presents a practical and convenient method for verifying the conformance of a
ForSyDe model against a set of specification properties. In order to do so we make use of the
QuickCheck framework, which offers an EDSL for specifying system model properties and a
random test-case generation engine for validating a design under test (DUT) against these
properties. Although the verification is not exhaustive, it is “smart” enough to quickly identify
and correct discrepancies between specification and model implementation, making QuickCheck
an ideal tool in a system designer’s toolbox.

Package aesa-atom-0.1.0 path: ./aesa-atom/README.md
Deps forsyde-atom-0.3.1 url: https://forsyde.github.io/forsyde-atom/api/

QuickCheck-2.13.1 url: http://hackage.haskell.org/package/QuickCheck
Suite tests-cube usage: stack test :tests-cube

QuickCheck (Claessen and Hughes 2011) is a DSL embedded in Haskell for specifying denotational
properties of functions, and a test case generator engine based on type algebras to obtain a good coverage
of a DUT. As it is based on type algebras, it uses the insights from the DUT’s type constructors to build
automatic or user-guided strategies for identifying edge or violating cases within a relatively small number
of test cases. Due to its random nature it is capable of finding failing sequences of inputs, which are then
shrinked to define minimum violating cases, making it very useful in development iterations.

A very good article motivating QuickCheck’s usefulness in system design is found on Joe Nelson’s blog,
from which we extract the following paragraph: “Proponents of formal methods sometimes stress the
notion of specification above that of implementation. However it is the inconsistencies between these
two independent descriptions of the desired behavior that reveal the truth. We discover incomplete
understanding in the specs and bugs in the implementation. Programming does not flow in a single
direction from specifications to implementation but evolves by cross-checking and updating the two.
Property-based testing quickens this evolution. Of course the only way to truly guarantee properties of
programs is by mathematical proof. However property-based tests approximate deductive confidence with
less work by checking properties for a finite number of randomized inputs called test cases.”

DISCLAIMER: this section assumes that the reader is familiar with QuickCheck’s syntax and has gone
through a few hands-on tutorials. For more information we recommend checking out either the article of
Hughes (2007), John Nelson’s blog article on QuickCheck, or the (slightly outdated) official QuickCheck
tutorial.

5.1 Formal Notation

Properties in the QuickCheck DSL are formulated as pre-condition ⇒ statement, where pre-conditions
are defining generators for legal inputs under which the statement is evaluated.

In order to ease the understanding of the QuickCheck code, for each property we will also provide
a short-hand mathematical notation using the pre-condition ⇒ statemen format, using the following
conventions:

Notation Meaning
〈α〉 Vector a
|v| length v
s a signal with events with the type of s

〈a, b, c, ...〉 vector [a,b,c,...]
{a, b, c, ...} signal [a,b,c,...]

Σ(s) or Σ(v) the (ordered) sequence with the elements from a signal s or a
vector v

38

http://www.cse.chalmers.se/~rjmh/QuickCheck/
http://www.cse.chalmers.se/~rjmh/QuickCheck/
https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html
https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

5.2 Properties

In this subsection we formulate a handful of properties whose purpose is:

1. to test that the model implementation from section 2.2 does not violate in any circumstance these
“contracts”; and

2. ensure that any future (iterative) model refinement does not alter or violate these “contracts”.

Below you find the code written in a runnable module found at aesa-atom/test, which constitute the
:tests-cube suite:

14 module SpecCube where

5.2.1 Imports

A couple of modules need to be imported before we can proceed. The QuickCheck and Framework
modules a provide the test DSL as well as a couple of handy utilities for writing and handling test suites.

23 import Test.QuickCheck as QC
24 import Test.QuickCheck.Function
25 import Test.Framework
26 import Test.Framework.Providers.QuickCheck2 (testProperty)

We import some relevant ForSyDe-Atom modules, mainly to get access to the internal structure of
ForSyDe types such as Vector or Signal.

31 import ForSyDe.Atom.Skel.FastVector as V
32 import ForSyDe.Atom.MoC.SY as SY
33 import ForSyDe.Atom.Skel.FastVector.Matrix (Matrix, size)
34 import ForSyDe.Atom.Skel.FastVector.DSP (fir)

Obviously, we need to import the AESA designs modules as well.

38 import AESA.CubesAtom
39 import AESA.Coefs
40 import AESA.Params

Finally, we import some in-house data generators which will be used in formulating the pre-conditions
below, as well as some Haskell data type libraries. The generators are further documented in section 5.2.4.

46 import Generators
47 import Data.List as L
48 import Data.Complex

5.2.2 Formulations

The first property we want to check is that the main function in DBF (see section 2.2.2.1), fDBF will
always yield nB beam samples, no matter what or how many inputs it has. Using the notation from
section 5.1 we can formalize this property as follows:

∀v ∈ 〈C〉 : |v| > 0⇒ |fDBF (v)| = nB (8)

Using our custom generator nonNullVector (see section 5.2.4) which satisfies ∀v ∈ 〈α〉 : |v| > 0. we
translate eq. 8 to QuickCheck code:

64 prop_dbf_num_outputs = forAll (nonNullVector arbitrary)
65 $ \v -> V.length (fDBF v) == nB

This property ensures that the Beam dimension is respected, but what about the Range and Pulse
dimensions of the indata video cube? These dimensions must not be altered. This is easy to prove, since
the vector on those dimensions undergo a set of nested farm transformations, which ensure by definition
that they do not alter the structure of the input data. However, let us be skeptical and assume that

39

http://hackage.haskell.org/package/QuickCheck
http://hackage.haskell.org/package/HTF

the library might be faulty, since farm is such an essential skeleton in the AESA system. A property
which verifies that farm does not alter the structure of its input type, and thus any n-dimensional vector
(e.g. Matrix, Cube) undergoing a farm11 keeps its original dimensions, can be formulated as:

∀v ∈ 〈C〉 ⇒ |farm11(f, v)| = |v| (9)

80 prop_generic_farm_structure :: Fun Int Int -> Vector Int -> Bool
81 prop_generic_farm_structure f v = V.length v == V.length (farm11 (apply f) v)

Notice that if there are no special pre-conditions for the input data, e.g. ∀v ∈ 〈C〉, we don’t need to invoke
our own generator with the forAll keyword, but rather just specify the input type and QuickCheck will
automatically call the default arbitrary generator for that particular type. Also, we enable QuickCheck
to generate arbitrary unary functions along with arbitrary data, by using its Fun a b = Fun {apply ::
a -> b} function wrapper.

Another property we want to make sure is not violated during any stage in the refinement flow is that
the DBF block does not produce overflown numbers, i.e. the beam coefficients are well-scaled. At this
abstraction level, we do not really consider the number representation, and for what it’s worth we
can assume that our type CpxData is in fact C = a + bi where a, b ∈ R. However, we know from the
specifications that the input values ∀a ∈ C : a >= −1 − i ∧ a < 1 + i and that we eventually need to
find efficient implementation for these number representations. The engineering intuition/experience tells
that a more efficient representation would deal only with decimal numbers and would not need to be
concerned with the integer part (e.g. Qn fixed point representation). Thus, at the functional level we
need to ensure that the outputs themselves remain within the [−1− i, 1 + i) value pool as well, in order
to avoid overflow in an arbitrary number representation.

For the function fDBF , the property ensuring legal value bounds would be formulated as:

∀v ∈ 〈C〉, a ∈ v, b ∈ fDBF (v) : |v| > 0 ∧ a ∈ [−1− i, 1 + i)⇒ b ∈ [−1− i, 1 + i) (10)

which translates into QuickCheck code4 to:

112 prop_dbf_value_range = forAll (nonNullVector decimalCpxNum)
113 $ \v -> all (withinRangeComplex (-1) 1) $ V.fromVector (fDBF v)

Recall that in section 2.2.2.1 we have said that fDBF is the equivalent of a simple vector-matrix dot
operation, and provided a simplified definition f ′DBF using the library-provided dotvm function. But are
fDBF and f ′DBF really equivalent? We test this out by formulating a property:

∀v ∈ 〈C〉 ⇒ fDBF (v) = f ′DBF (v) (11)

125 prop_dbf_func_equiv = forAll (nonNullVector arbitrary)
126 $ \v -> fDBF v == fDBF' v

Next we target the PC component (see section 2.2.2.2). The problem of dimension preserving has
been solved by the previous prop_generic_farm_structure however, keeping our skeptical attitude, we
want to check that the library-provided fir function performing a moving average, does not alter the
dimensions of the input data

∀v ∈ 〈C〉 ⇒ |fPC(v)| = |v| (12)
137 prop_pc_num_outputs :: Vector CpxData -> Bool
138 prop_pc_num_outputs v = V.length v == V.length (fPC v)

or that it is indeed having the right response to an impulse sequence:

∀v ∈ 〈C〉, i = 〈1, 0, ...〉 ⇒ fir(v, i) = v (13)

144 prop_pc_fir_response :: Vector CpxData -> Bool
145 prop_pc_fir_response v = and $ zipWith (==) coefs response
146 where
147 coefs = fromVector v
148 response = fromVector $ fir v impulse
149 impulse = V.vector $ 1 : replicate 100 0

4the decimalCpxNum generator and withinRangeComplex utility are defined in the Generators module, see section 5.2.4

40

Furthermore we need to check that the FIR coefficients are scaled correctly and the outputs are within
the legal range to avoid future possible overflows.

∀v ∈ 〈C〉, a ∈ v, b ∈ fPC(v) : |v| > 0 ∧ a ∈ [−1− i, 1 + i)⇒ b ∈ [−1− i, 1 + i) (14)

157 prop_pc_value_range = forAll (nonNullVector decimalCpxNum)
158 $ \v -> all (withinRangeComplex (-1) 1) $ V.fromVector (fPC v)

Checking the overlap process in section 2.2.2.2 is a quite tricky to check due to the structure of the data:
we would need to access and compare data wrapped in nested vectors with large dimensions, meaning that
it will be a very slow process. The 50% overlap will be able to be tested more easily using a random test
generator further in section 6. For now we test that the cube dimensions are preserved by the overlap
function:

∀c ∈ 〈〈〈C〉〉〉, o ∈ overlap(c) : |c| = (nb, nB , nFFT)⇒ |o| = (nb, nB , nFFT) (15)

170 prop_ct_dimensions = forAll (sizedCube nFFT nB nb arbitrary)
171 $ \c -> dimensionsMatch $ overlap $ SY.signal [c]
172 where
173 dimensionsMatch s = let c = L.head $ SY.fromSignal $ s
174 z = V.length c
175 y = V.length $ V.first c
176 x = V.length $ V.first $ V.first c
177 in z == nFFT && y == nB && x == nb

From DFB onward we deal with Doppler values which have a higher range, so we are no longer concerned
with testing for overflowing output data, until we take a decision in the refinement process to fix a
particular number representation. However, we would still like to test that the format and dimensions of
the intermediate cubes is the same, thus we formulate:

185 prop_dfb_num_outputs = forAll (sizedVector nFFT arbitrary)
186 $ \v -> V.length v == V.length (fDFB v)

188 prop_cfar_num_outputs = forAll (nonNullVector $ nonNullVector arbitrary)
189 $ \m -> size m == size (fCFAR m)

The DFB contains a FFT function which is hard-coded to work for nFFT samples thus we need to fix the
input size accordingly. For the CFAR output, we use the Matrix size utility.

We have tested that the fir implementation gives the correct impulse response, but what about our fir'
network instantiation firNet defined in section 2.2.2.6? Does it act like a proper FIR filter? We test it
by giving it an “impulse cube” signal, and test that the response is the expected one:

∀v ∈ 〈R〉, c1, c0 ∈ 〈〈〈R〉〉〉, e1 ∈ c1, e0 ∈ c0 : e1 = 1 ∧ e0 = 0⇒ firNet(v, {c1, c0, c0, ...}) = sv (16)

where sv is the response signal whose events are events are cubes containing the coefficients in v. The
generator impulseSigOfCubes is, again, defined in section 5.2.4.

208 prop_int_fir_response :: V.Vector Int -> Property
209 prop_int_fir_response cf = forAll (impulseSigOfCubes $ V.length cf)
210 $ \i -> correctResponse (firNet cf i)
211 where
212 correctResponse r = and $ zipWith checkEq coefsL (toLists r)
213 checkEq i = all (all (all (==i)))
214 coefsL = L.reverse $ V.fromVector cf
215 toLists = map (map (map V.fromVector . V.fromVector) . V.fromVector) . fromSignal

5.2.3 Main function

Finally we gather all the properties defined in this section in a bundle of tests called “Cube HL Model
Tests”, using the utilities provided by the Test.Framework library. withMaxSuccess determines how
many random tests will be generated per property during one run.

41

224 tests :: [Test]
225 tests = [
226 testGroup " Cube HL Model Tests "
227 [testProperty "GENERIC farm does not alter the input structure "
228 (withMaxSuccess 100 prop_generic_farm_structure)
229 , testProperty "DBF right number of outputs "
230 (withMaxSuccess 100 prop_dbf_num_outputs)
231 , testProperty "DBF legal value range "
232 (withMaxSuccess 200 prop_dbf_value_range)
233 , testProperty "DBF equivalence with simple dot product operation "
234 (withMaxSuccess 200 prop_dbf_func_equiv)
235 , testProperty "PC right number of outputs "
236 (withMaxSuccess 100 prop_pc_num_outputs)
237 , testProperty "PC right unit impulse response "
238 (withMaxSuccess 100 prop_pc_fir_response)
239 , testProperty "PC legal value range "
240 (withMaxSuccess 200 prop_pc_value_range)
241 , testProperty "CT both channels have cubes of the same dimensions "
242 (withMaxSuccess 100 prop_ct_dimensions)
243 , testProperty "DFB right number of outputs "
244 (withMaxSuccess 100 prop_dfb_num_outputs)
245 , testProperty "CFAR right number of outputs "
246 (withMaxSuccess 100 prop_cfar_num_outputs)
247 , testProperty "INT right unit impulse response "
248 (withMaxSuccess 70 prop_int_fir_response)
249]
250]

252 main :: IO()
253 main = defaultMain tests

5.2.4 Data Generators

The data generators used to formulate pre-conditions in this section, as well as a couple of utility functions
are defined in this in-house module found at aesa-atom/tests. The documentation for each function is
provided as in-line comments.

8 module Generators where
9

10 import Test.QuickCheck as QC
11 import ForSyDe.Atom.Skel.FastVector as V
12 import ForSyDe.Atom.MoC.SY as SY
13 import ForSyDe.Atom.MoC.SDF as SDF
14 import qualified ForSyDe.Atom.Skel.FastVector.Matrix as M
15 import qualified ForSyDe.Atom.Skel.FastVector.Cube as C
16 import ForSyDe.Atom.MoC.Stream
17 import Data.Complex
18 import Data.List as L

20 -- | Generator for complex numbers within the range $[-1-i,1+i)$
21 decimalCpxNum :: Gen (Complex Float)
22 decimalCpxNum = do
23 realPart <- choose (-1,0.99999999999)
24 imagPart <- choose (-1,0.99999999999)
25 return (realPart :+ imagPart)

28 -- | Generates non-null vectors, i.e. which satisfy 'forall v . length v > 0'.
29 nonNullVector :: Gen a -> Gen (Vector a)
30 nonNullVector a = do

42

31 ld <- listOf a `suchThat` (not . L.null)
32 return $ V.vector ld

34 -- | Generator for vector of fixed size.
35 sizedVector :: Int -> Gen a -> Gen (Vector a)
36 sizedVector n a = do
37 v <- QC.vectorOf n a
38 return $ V.vector v

40 -- | Generator for cube of fixed size.
41 sizedCube :: Int -> Int -> Int -> Gen a -> Gen (C.Cube a)
42 sizedCube z y x = sizedVector z . sizedVector y . sizedVector x

44 -- | Generator for a SY signal
45 sigOfSmallCubes :: Gen a -> Gen (SY.Signal (C.Cube a))
46 sigOfSmallCubes g = do
47 x <- choose (2, 20) -- do not choose too large dimensions otherwise
48 y <- choose (2, 20) -- the tests will take too long... small tests are
49 z <- choose (2, 20) -- good enough
50 sigData <- listOf1 $ sizedCube z y x g
51 return (SY.signal sigData)

53 -- | Generator for an impulse signal of (small) cubes:
54 impulseSigOfCubes :: Int -> Gen (SY.Signal (C.Cube Int))
55 impulseSigOfCubes n = do
56 x <- choose (2, 20) -- do not choose too large dimensions otherwise
57 y <- choose (2, 20) -- the tests will take too long... small tests are
58 z <- choose (2, 20) -- good enough
59 impulse <- sizedCube z y x $ elements [1]
60 trail <- sizedCube z y x $ elements [0]
61 return (SY.signal (impulse : replicate n trail))

63 -- | The default 'Arbitrary' instance for the different ForSyDe-Atom types used in
64 -- the report.
65 instance Arbitrary a => Arbitrary (V.Vector a) where
66 arbitrary = do
67 x <- arbitrary
68 return (V.vector x)
69

70 instance Arbitrary a => Arbitrary (Stream a) where
71 arbitrary = do
72 x <- arbitrary
73 return (stream x)
74

75 instance Arbitrary a => Arbitrary (SY.SY a) where
76 arbitrary = do
77 x <- arbitrary
78 return (SY.SY x)
79

80 instance Arbitrary a => Arbitrary (SDF.SDF a) where
81 arbitrary = do
82 x <- arbitrary
83 return (SDF.SDF x)

85 -- | Utility which tests whether a complex number is within the range $[-1-i,1+i)$
86 withinRangeComplex :: Ord a => a -> a -> Complex a -> Bool
87 withinRangeComplex a b c
88 | realPart c < a = False
89 | imagPart c < a = False
90 | realPart c >= b = False
91 | imagPart c >= b = False

43

92 | otherwise = True

5.3 Running the Test Suite. Conclusion

The file shown in section 5.2 can be compiled using any means available. We have included it as a test
suite for the aesa-atom package. Please refer to the package’s README file for instructions on how to
compile an run the tools.

As expected (in a public report) the test suite output looks like below:

aesa-atom-0.1.0.0: test (suite: tests-cube)

Cube HL Model Tests :
GENERIC farm does not alter the input structure : [OK, passed 100 tests]
DBF right number of outputs : [OK, passed 100 tests]
DBF legal value range : [OK, passed 200 tests]
DBF equivalence with simple dot product operation : [OK, passed 200 tests]
PC right number of outputs : [OK, passed 100 tests]
PC right unit impulse response : [OK, passed 100 tests]
PC legal value range : [OK, passed 200 tests]
CT both channels have cubes of the same dimensions : [OK, passed 100 tests]
DFB right number of outputs : [OK, passed 100 tests]
CFAR right number of outputs : [OK, passed 100 tests]
INT right unit impulse response : [OK, passed 70 tests]

Properties Total
Passed 11 11
Failed 0 0
Total 11 11

aesa-atom-0.1.0.0: Test suite tests-cube passed

However it should not be taken for granted that during the development process the printed output is this
flawless. As mentioned in this section’s introduction, like any other software project, a ForSyDe model
grows organically with consecutive iterations between system specification and model implementation,
often held accountable by different parties or groups. Along with traditional unit tests (not covered by
this report), property checking is a powerful tool which shortens these iteration cycles by setting a formal
“legal frame” within which each (sub-)component in a a model needs to operate. Apart from helping in
understanding the specification better, these properties ensure that further in the refinement process we
do not mistakenly introduce new flaws. This will be demonstrated in the next sections.

44

6 Refining the Model Behavior. A Streaming Interpretation of
AESA

In this section we refine the behavior of the high-level AESA model presented in section 2
focusing on a more fine-grained timed (i.e. streaming) aspects of the computation. We do this
in an attempt to expose the inherent parallelism of the AESA application, by describing it as
parallel networks of concurrent, independent processes operating on streaming elements rather
than monolithic blocks operating on cubes. This perspective should pave the way for a more
efficient exploration of the available design space in future refinement decisions. We present
an alternative streaming-oriented model of the AESA system, validate it against test data and
verify the properties previously formulated.

Package aesa-atom-0.1.0 path: ./aesa-atom/README.md
Deps forsyde-atom-0.3.1 url: https://forsyde.github.io/forsyde-atom/api/

QuickCheck-2.13.1 url: http://hackage.haskell.org/package/QuickCheck
Suite tests-stream usage: stack test :tests-stream
Bin aesa-stream usage: aesa-stream --help

The high-level behavioral model of the AESA signal processing chain presented in this section is seman-
tically equivalent to the one presented in section 2, however it exposes a more fine-grained temporal
behavior of the individual operations performed on the complex indata samples. While most design
choices are driven by a didactic purpose to consolidate the new modeling concepts presented in section 2.1,
they can also be justified by the need to capture the essential properties in a formal way, in order to be
exploitable in future stages of a design flow towards efficient implementations. The main design approach
is to exploit the relative independence between each data path associated with each antenna element or
beam, and to model these paths as skeletons (e.g. farms) of (chains of) processes. Each design decision
will infer a re-partitioning of the indata cubes between the time (i.e. causality) and space dimensions
following the design patters depicted earlier in Figure 3, namely:

• skeletons of processes which: 1) express parallelism at the process level; 2) depicts processes as
operating on elementary streams of data, e.g. originating from each antenna element in particular,
and skeletons as the structured interactions between these streams; 3) expose a fine-grained modular
view allowing to quantify the potential for load distribution, since each “operation” (i.e. process)
clearly captures the aspect of precedence constraints.

• process of skeletons which : 1) express parallelism at the datum level; 2) depicts processes as
operating on structures of data (e.g. vectors, matrices or cubes); 3) expose a monolithic view of
processes where precedence constraints are expressed “outside” of the algorithm, and where the
algorithm itself expresses potential for data parallelism.

6.1 The High-Level Model

The code for this section is written in the following module, see section 1.2 on how to use it:

7 module AESA.StreamsAtom where

6.1.1 Libraries and Aliases

We import exactly the same libraries as in section 2.2, so we don’t need to explain what each one does.
However, in this model we introduce a new MoC. For describing streaming behavior of the application
our design will use a heterogeneous approach, using a combination of synchronous reactive (SY) processes
(Edward A. Lee and Seshia 2016; Benveniste et al. 2003), where the main assumption is that all events in
the system are synchronized; and synchronous data flow (SDF) processes (Edward A. Lee and Seshia 2016;
Lee and Parks 1995), where the temporal behavior is formulated in terms of partial order constraints
between events. We also use the Boolean dataflow model, which is an extension to SDF to allow for

45

dynamic behaviors (Buck and Lee 1993). We import the SY, SDF and BDF libraries described in the MoC
layer, see (Ungureanu and Sander 2017), using an appropriate alias for each.

26 import ForSyDe.Atom.MoC.SY as SY
27 import ForSyDe.Atom.MoC.SDF as SDF
28 import ForSyDe.Atom.MoC.SDF.BDF as BDF
29 import ForSyDe.Atom.Skel.FastVector as V
30 import ForSyDe.Atom.Skel.FastVector.Matrix as M
31 import ForSyDe.Atom.Skel.FastVector.DSP
32 import AESA.Coefs
33 import AESA.Params
34 import Data.Complex

36 import qualified AESA.CubesAtom as CAESA

We use the same internal aliases to name the different types employed in this model:

40 type Antenna = Vector -- length: nA
41 type Beam = Vector -- length: nB
42 type Range = Vector -- length: nb
43 type Window = Vector -- length: nFFT
44 type CpxData = Complex Float
45 type RealData = Float

6.1.2 Video Processing Stages

In this section we follow each stage earlier described in described in section 2.2, and exploit the initial
assumption on the order of events stating: “For each antenna the data arrives pulse by pulse, and each
pulse arrives range bin by range bin. This happens for all antennas in parallel, and all complex samples
are synchronized with the same sampling rate, e.g. of the A/D converter.”

This allows us to “unroll” the indata video cubes into NA parallel synchronous streams, each stream
being able to be processed as soon as it contains enough data. This unrolling is depicted in Figure 26 as
streaming the pulses as soon as they arrive: range bin by range bin. We say that we partition the data in
time rather than in space, which is a more appropriate partition judging by the assumption above.

ra
ng
e
bi
ns

a
n
te
n
n
a
s

pulses

pulse

NA

Nb

a
n
te
n
n
a
s

samples

NA

Nb...

pulse

bin

⇒

Figure 26: Video cube unrolling

6.1.2.1 Digital Beamforming (DBF)

The role of the DBF stage is explained in section 2.2.2.1. Depicted from a streaming point of view, DBF
would like in Figure 27.

46

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SDF.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC.html

a
n
te
n
n
a
s

samples

NA

Nb...

ra
ng
e
bi
ns

a
n
te
n
n
a
s

pulses

pulse

NA

Nb

b
ea

m
s

samples

NB

Nb...

⇒≡

Figure 27: Digital Beam Forming on streams of complex samples

As can be seen in Figure 27, a beam can be formed as soon as all antennas have produced a complex
sample. The parallel streams of data coming from each antenna element are represented as a vector of
synchronous (SY) signals, i.e. vector of signals where each event is synchronous with each other. This
allows us to depict the dataflow interaction between the streams during digital beamforming as the
process network in Figure 28, where an ⊕ represents a combinational process comb.

...

· · ·

b1

...

· · ·

b2

...

· · ·

bNB

farm
reduce reduce reduce

farm

a1
fanout · · ·

a2
fanout · · ·

aNA

fanout · · ·

beamSigs

beamMatrix

a
n
t
e
n
n
a
S
i
g
s

×α11 ×α12
×α1NB

×α21 ×α22
×α2NB

×αNA1 ×αNA2 ×αNANB

+

+

+

+

+

+

〈〈αij〉〉

Figure 28: DBF network

82 dbf :: Antenna (SY.Signal CpxData)
83 -> Beam (SY.Signal CpxData)
84 dbf antennaSigs = beamSigs
85 where
86 beamSigs = V.reduce (V.farm21 (SY.comb21 (+))) beamMatrix
87 beamMatrix = M.farm21 (\c -> SY.comb11 (*c)) beamConsts sigMatrix
88 sigMatrix = V.farm11 V.fanout antennaSigs
89 beamConsts = mkBeamConsts dElements waveLength nA nB :: Matrix CpxData

47

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC.html#v:comb22

Function Original module Package
farm11, reduce, length ForSyDe.Atom.Skel.FastVector forsyde-atom
farm21 ForSyDe.Atom.Skel.FastVector.Matrix forsyde-atom
comb11, comb21 ForSyDe.Atom.MoC.SY forsyde-atom
mkBeamConsts AESA.Coefs aesa-atom
dElements, waveLength, nA, nB AESA.Params aesa-atom

The previous code listing, depicted in Figure 28, is actually showing the exact same “internals” as the
vector-matrix dot product presented in section 2.2.2.1. However, the elementary operations, instead
of regular arithmetic operations × and +, are processes applying these operations on SY streams. As
such, the fanout skeleton distributes one signal to a whole row (i.e. vector) of processes, the matrix
farm applies pair-wise a matrix of partially applied processes on this matrix of signals, and reduce
creates a reduction network of binary processes pair-wise applying the function + on all events in signals.
Practically the DBF network transforms NA synchronous signals originating from each antenna element
into NB synchronous signals for each beam. The internal structure of this transformation exposes multiple
degrees of potential distribution on parallel synchronous resources.

6.1.2.2 Pulse Compression (PC)

The role of the DBF stage is explained in section 2.2.2.2. The sliding window, or moving average (MAV),
is now applied on the range bin samples in the order of their arrival.

b
ea

m
s

samples

NB

Nb...

b
ea

m
s

samples

NB

Nb...

ra
ng
e
bi
ns

b
ea

m
s

pulse

pulse

NB

Nb

⇒≡

Figure 29: Pulse Compression on streams of complex samples

In Figure 29 we can see that, in order to apply the MAV algorithm on all the range bins of every pulse, we
need to accumulate Nb samples and process them in batches. Intuitively this can be done by processing
each beam with a synchronous dataflow (SDF) actor which, with each firing, consumes Nb samples and
produces Nb samples. Note that at this stage of modeling we value intuition and the capturing of the
right application properties rather than target implementation efficiency. We will tackle this problem
later in the design stages (see section 7) where we will try to transform the model toward more efficient
implementation models (with respect to some constraint, e.g. throughput) which preserve these behavioral
properties.

131 pc :: Beam (SY.Signal CpxData)
132 -> Beam (SDF.Signal CpxData)
133 pc = V.farm11 (procPC . SY.toSDF1)

Function Original module Package
farm11 ForSyDe.Atom.Skel.FastVector forsyde-atom
toSDF1 ForSyDe.Atom.MoC.SY forsyde-atom
comb11 ForSyDe.Atom.MoC.SDF forsyde-atom
fir ForSyDe.Atom.Skel.FastVector.DSP forsyde-atom
mkPcCoefs AESA.Coefs aesa-atom
nb AESA.Params aesa-atom

48

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-Matrix.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SDF.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-DSP.html

procPC

mav(coefs)

SDF.comb

Nb Nb

pcfarm

〈bdbf1 ...bdbfNB
〉 〈bpc1 ...bpcNB

〉

Figure 30: PC stage process

Following the reasoning above, we instantiate the PC video processing stage as a farm of SDF processes
procPC as depicted in Figure 30. Notice that before being able to apply the SDF actors we need to translate
the SY signals yielded by the DBF stage into SDF signals. This is done by the toSDF interface which is
an injective mapping from the (timed) domain of a SY MoC tag system, to the (untimed) co-domain of a
SDF MoC tag system. For more on tag systems please consult (Lee and Sangiovanni-Vincentelli 1998).

153 procPC :: Fractional a => SDF.Signal a -> SDF.Signal a
154 procPC = SDF.actor11 (nb, nb, V.fromVector . fir (mkPcCoefs pcTap) . V.vector)

The procPC actor consumes and produces nb tokens each firing, forms a Vector from these tokens, and
applies the same fir function used in section 2.2.2.2 on these vectors. Also notice that the type signature
for procPC is left polymorphic as to be more convenient later when we formulate properties over it.

6.1.2.3 Corner Turn (CT) with 50% overlap

The role of the CT stage is explained in section 2.2.2.3. In this model we make use of the knowledge that
for each beam sample arrives in order, one range bin at a time, in the direction of consumption suggested
in Figure 31, and “fill back in” the video cube in the direction of production. In order to maximize the
efficiency of the AESA processing the datapath is split into two concurrent processing channels with 50%
overlapped data, as shown in Figure 7 from section 2.2.2.3.

ra
ng
e
bi
ns

b
ea

m
s

pulse windows

direction of consumption

NA

Nb

NFFT

ra
ng
e
bi
ns

b
ea

m
s

pulse windows

direction of production

NA

Nb

NFFT

⇒

Figure 31: Building matrices of complex samples during CT

174 ct :: Beam (SDF.Signal CpxData)
175 -> (Beam (SDF.Signal CpxData),
176 Beam (SDF.Signal CpxData))
177 ct = V.farm12 procCT

Our CT network thus maps on each beam signal a corner turn process which, under the SDF execution
semantics, consumes NFFT ×Nb ordered samples, interprets them as a matrix, transposes this matrix,
and produces Nb ×NFFT samples ordered in the direction suggested in Figure 31.

184 procCT :: SDF.Signal a -> (SDF.Signal a, SDF.Signal a)
185 procCT sig = (corner rightCh, corner leftCh)
186 where

49

187 leftCh = sig
188 (_,rightCh) = BDF.bSwitch 1 selectSig sig
189 selectSig = SDF.delay (replicate (nb * nFFT `div` 2) False)
190 $ SDF.constant1 [True]
191 corner = SDF.actor11 (nFFT * nb, nb * nFFT,
192 fromMatrix . M.transpose . matrix nb nFFT)

Function Original module Package
farm12 ForSyDe.Atom.Skel.FastVector forsyde-atom
(from-)matrix,
transpose

ForSyDe.Atom.Skel.FastVector.Matrix forsyde-atom

comb11, delay ForSyDe.Atom.MoC.SDF forsyde-atom
nb, nFFT AESA.Params aesa-atom

Recall that, in order to achieve 50% overlapping between the two output channels, in the initial high-level
model in section 2.2.2.3 we “delayed” the left channel with half a cube of “useless data” which we later
ignored in the testbench. While it is possible to do the same trick here, i.e. delay the left channel with
Nb × NFFT /2 samples per beam, which is the equivalent of half a cube, we agreed upon it being a
simulation artifice to avoid undefined behavior, but not really reflecting the target implementation. The
end artifact would start streaming the left channels only after the first half cube. We can think of three
ways how to model such a behavior without stepping outside the data flow paradigm5:

1. “starting” the entire system (i.e. considering time 0) once we know the values for half a cube. This
means that the behavior of the AESA system does not include the acquisition of the first half video
cube, which would be described in its history (i.e. initial state, e.g. passed as top-level argument).

2. using absent semantics, which would be the correct way to define such an abstract behavior, but
would render the description of the whole system more complicated, since every block would then
need to be aware of the “absence” aspect of computation.

3. using a dynamic dataflow MoC, which is a bit more risky, because in general most of these MoCs
are undecidable and might lead to deadlocks if not used properly, but are less abstract and much
closer to what you would expect from a dynamic “start/stop” mechanism.

corner
T

SDF.comb

NFFT × Nb Nb × NFFT

corner
T

SDF.comb

NFFT × Nb Nb × NFFT

B
D
F
.
s
w
i
t
c
h

{ T, T, ..., T︸ ︷︷ ︸
Nb×NFFT /2

, F, ...}

procCT

ctfarm

〈bpc1 ...bpcNB
〉

〈bct,l1 ...bct,lNB
〉

〈bct,r1 ...bct,rNB
〉

Figure 32: CT network

Since we are already considering a refined behavior model of the AESA system, we have chosen the third
approach, as hinted in Figure 32. We use the Boolean dataflow (BDF) MoC introduced by Buck and
Lee (1993) to express the dynamic switching behavior. BDF extends SDF with two actors switch and
select which are able to redirect the flow of data to/from separate channels based on an input selection

5this type of behavior is quite naturally expressed in other paradigms, such as communicating sequential processes (CSP),
rendezvous or Petri Nets. Currently ForSyDe does not support such MoCs and they are out of the scope of this report.

50

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-Matrix.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SDF.html

signal carrying Boolean tokens. We use the BDF switch process which uses the hard-coded selectSig
signal to redirect the first Nb ×NFFT /2 tokens for each beam (the equivalent of half a cube of indata) to
a “null” channel, and only after that to start streaming into the right channel.

OBS: in general it is advised to avoid BDF, which does not benefit from static analysis methods for
schedulability and deadlock detection, in favor of a more analyzable one, such as scenario aware dataflow
(SADF) (Stuijk et al. 2011). However, in our case we base our modeling choice based on the knowledge
that, lacking any type of feedback composition, the AESA signal processing system cannot cause any
deadlock in any of its possible states. Even so, hard-coding the selection signal can also be considered a
safe practice, because it is possible to derive a fixed set of SDF scenarios based on a known reconfiguration
stream.

6.1.2.4 Doppler Filter Bank (DFB) and Constant False Alarm Ratio (CFAR)

For these two processing stages presented in sections 2.2.2.4, 2.2.2.5, we do not change the functional
description at all, but rather the granularity of their timed description. We continue to work over the
premise that signals are streaming samples of data, which have recently been arranged to arrive in pulse
order, as suggested by Figure 33. As such, both stages are modeled as farms of SDF processes operating
over beam streams, and for each stream they consume the necessary data, apply their (vector) function,
and produce their respective data.

b
ea

m
s

samples

NB

NFFT ...

ra
ng
e
bi
ns

b
ea

m
s

pulse windowsbeam

NA

Nb

NFFT
b
ea

m
s

samples

NB

NFFT ...

⇒≡

Figure 33: Doppler Filter Bank on streams of complex samples

procDFB

fDFB

SDF.comb

NFFT NFFT

procCFAR

fCFAR

SDF.comb

Nb × NFFT 1

dfbfarm cfarfarm

〈bct1 ...bctNB
〉 〈bcfar1 ...bcfarNB

〉

Figure 34: DFB + CFAR networks

269 dfb :: Beam (SDF.Signal CpxData)
270 -> Beam (SDF.Signal RealData)
271 dfb = V.farm11 procDFB

273 cfar :: Beam (SDF.Signal RealData)
274 -> Beam (SDF.Signal (Range (Window RealData)))
275 cfar = V.farm11 procCFAR

277 procDFB = SDF.actor11 (nFFT, nFFT, fromVector . CAESA.fDFB . vector)
278 procCFAR = SDF.actor11 (nb * nFFT, 1, (:[]) . CAESA.fCFAR . M.matrix nFFT nb)

Function Original module Package
farm11,(from-)vector ForSyDe.Atom.Skel.FastVector forsyde-atom
matrix ForSyDe.Atom.Skel.FastVector.Matrix forsyde-atom

51

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-Matrix.html

Function Original module Package
nb, nFFT AESA.Params aesa-atom

Notice how we reuse the exact same functions fDFB and fCFAR imported from the AESA.CubesAtom
previously defined in section 2.2. This way we are sure that we have not introduced coding errors. Also,
notice that after the CFAR process we do not unwrap the matrices any longer, but produce them as
individual tokens. This is because the subsequent INT block, as seen in the next paragraph, operates
much more efficiently on matrices, and thus we spare some intermediate wrapping/unwrapping.

OBS: each function composing fDFB and fCFAR is itself inherently parallel, as it is described in terms
of parallel skeletons. We could have “lifted” these skeletons as far as associating a process for each
elementary arithmetic operation, following the example set by the DBF network in section 6.1.2.1. The
two representations (if carefully modeled) are semantically equivalent and, thanks to the chosen formal
description, can be transformed (ideally being aided by a computer/tool in the future) from one to
another. In fact there are multiple degrees of freedom to partition the application on the time/space
domains, thus a particular representation should be chosen in order to be more appropriate to the target
platform model. However in this report we are not planning to refine these blocks even further, so for
the purpose of simulation and visualization, this abstraction level is good enough for now. The skeleton
lifting to the process network level is left as an exercise for the reader. The interested reader is also
recommended to read the skeletons chapter in the technical manual (Ungureanu 2018) to see how the
fft skeleton used in fDFB is defined, and how it behaves during different instantiations, as network of
processes or as function.

6.1.2.5 Integrator (INT)

During the last stage of the video processing chain each data sample of the video cube is integrated
against its 8 previous values using an 8-tap FIR filter.

ra
ng
e
bi
ns

b
ea

m
s

windowbeam

bin

NA

N ′
b

NFFT

ra
ng
e
bi
ns

b
ea

m
s

windowbeam

bin

NA

N ′
b

NFFT

ra
ng
e
bi
ns

b
ea

m
s

windowbeam

bin

NA

N ′
b

NFFT

· · ·

8-tap FIR

Figure 35: Integration on cubes of complex samples

The integration, re-drawn in Figure 35, like each stage until now, can be modeled in different ways based
on how the designer envisions the partitioning of the data “in time” or “in space”. This partitioning
could be as coarse-grained as streams of cubes of samples, or as fine-grained as networks of streams of
individual samples. For convenience and for simulation efficiency6 we choose a middle approach: video
cubes are represented as farms (i.e. vectors) of streams of matrices, as conveniently bundled by the
previous DFB stages. We pass the responsibility of re-partitioning and interpreting the data accordingly
to the downstream process, e.g. a control/monitoring system, or a testbench sink.

328 int :: Beam (SDF.Signal (Range (Window RealData)))
329 -> Beam (SDF.Signal (Range (Window RealData)))

6we try to avoid unnecessary transposes (i.e. type traversals) which, at the moment, are not very efficiently implemented.

52

330 -> Beam (SY.Signal (Range (Window RealData)))
331 int = V.farm21 procINT

Please review section 2.2.2.6 concerning the up-sampler interleave used as a SY utility process. Here,
since you have been already introduced to the SDF MoC, we can “unmask” how an interleaving process
actually operates underneath. It is in fact a SDF actor which consumes one token from each input and
interleaves them at the output.

%

%

%

recur

farm

reduce

merge
SDF.comb

1

1
2

firNet

INT

· · ·

· · ·

· · ·

〈bdfb,r1 ...bdfb,rNB
〉

〈bdfb,l1 ...bdfb,lNB
〉

〈baesa1 ...baesaNB
〉

×c1

0

×c2

+

0

×c3

+

0

×cN

+

Figure 36: INT network

340 procINT :: Fractional a => SDF.Signal (Matrix a) -> SDF.Signal (Matrix a) -> SY.Signal (Matrix a)
341 procINT cr = firNet mkIntCoefs . SDF.toSY1' . merge cr
342 where
343 merge = SDF.actor21 ((1,1), 2, \[r] [l] -> [r, l])

As for the FIR network, we prefer working in the SY MoC domain, which describes more naturally a
streaming n-tap filter, hence we use translate back using the toSY MoC interface.

349 firNet :: Num a => Vector a -> SY.Signal (Matrix a) -> SY.Signal (Matrix a)
350 firNet coefs = fir' addSM mulSM dlySM coefs
351 where
352 addSM = SY.comb21 (M.farm21 (+))
353 mulSM c = SY.comb11 (M.farm11 (*c))
354 dlySM = SY.delay (M.fanout 0)

Function Original module Package
farm21 ForSyDe.Atom.Skel.FastVector forsyde-atom
farm21,farm11,fanout ForSyDe.Atom.Skel.FastVector.Matrix forsyde-atom
fir' ForSyDe.Atom.Skel.FastVector.DSP forsyde-atom
comb21,comb11 ForSyDe.Atom.MoC.SDF forsyde-atom
mkIntCoefs AESA.Coefs aesa-atom

6.1.3 System Process Network

Finally, when putting all the blocks together in an equation, we obtain the system aesa' in Figure 37.

dbf

DBFmapReduce

pc
Nb

PCfarm

ct
NFFT × Nb

Nb × NFFT

Nb × NFFT

CTfarm

dfb
NFFT NFFT

DFBfarm

cfar
Nb × NFFT 1

CFARfarm

dfb
NFFT NFFT

DFBfarm

cfar
Nb × NFFT 1

CFARfarm

int

1

1

INTfarm

〈a
〉 N

A

〈〈
〈b
〉 N

F
F

T
〉 N

b
′〉 N

B

Legend: CpxData

RealData

Figure 37: AESA network as black-box components

53

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-Matrix.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-DSP.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SDF.html

373 aesa' :: Antenna (SY.Signal CpxData) -> Beam (SY.Signal (Range (Window RealData)))
374 aesa' video = int rCfar lCfar
375 where
376 lCfar = cfar $ dfb lCt
377 rCfar = cfar $ dfb rCt
378 (rCt,lCt) = ct $ pc $ dbf video

At least for the sake of code elegance if not for more, we refine the system aesa' in Figure 37 to avoid
unnecessary merging-splitting of vectors between stages, by fusing the farm skeletons between the PC
and INT stages, like in Figure 38. While for simulation this transformation does not make much of a
difference (thanks to Haskell’s lazy evaluation mechanisms), for future synthesis stages it might be a
valuable insight, e.g. it increases the potential of parallel distribution. As both models are semantically
equivalent an automated or tool-assisted transformation process should be trivial.

389 aesa :: Antenna (SY.Signal CpxData) -> Beam (SY.Signal (Range (Window RealData)))
390 aesa = V.farm11 pcToInt . dbf

392 pcToInt beam = let (rb,lb) = procCT $ procPC $ SY.toSDF1 beam
393 lCFAR = procCFAR $ procDFB lb
394 rCFAR = procCFAR $ procDFB rb
395 in procINT rCFAR lCFAR

dbf pc
Nb

ct
NFFT × Nb

Nb × NFFT

Nb × NFFT

dfb
NFFT NFFT

cfar
Nb × NFFT 1

dfb
NFFT NFFT

cfar
Nb × NFFT 1

int

1

1

mapReduce

farm

〈a
〉 N

A

〈〈
〈b
〉 N

F
F

T
〉 N

b
′〉 N

B

Figure 38: AESA network when fusing the related farms

6.2 Model Simulation Against Test Data

Just like before in section 2.3 we test the compiled model built from the blocks defined in section 6.1
within the AESA.StreamsAtom module against the same generated input data. Please refer to the the
project’s README file on how to compile and run the necessary software tools.

The 13 objects described in tbl. 12 and plotted in Figure 17a are again identified in the AESA radar
processing output plotted in Figure 39. Again we notice a slight difference in the cross-correlation values
due to a different chaining of floating point operations, but in general the detected objects are within the
same range.

6.3 Checking System Properties

In section 5 we preached the need for ways of verifying that an (executable) model satisfies a set of
specification properties, and that those properties are not being violated during the refinement process.
We presented QuickCheck as a practical and easy means for formulating properties and validating them
against randomly-generated test cases. Following the same mindset, in this subsection we will try to
validate through simulation7 that the semantics of the main blocks in the AESA signal processing system
defined in section 6.1 preserve the semantics of their initial high-level description from section 2.2, with
respect to the properties formulated in section 5.2.

Below you find the code written in a runnable module found at aesa-atom/test, which constitute the
:tests-cube suite:

18 module SpecStream where

7actually for most of the properties in this section there are theories which can prove the preservation of semantics during
certain transformations (e.g. the Bird-Merteens formalism) without the need to resort to simulation, but they are out of the
scope of this report. This report rather focuses on common practices and tools for disciplined design instead.

54

0 50 100 150 200 250

0

200

400

600

800

1000

6.3
6.7

60.6
91.0
64.8

14.5
23.3

17.8
20.7

86.0
37.5
18.6

beam 0

0 50 100 150 200 250

12.0
12.2

126.7
189.2
135.8

30.9
47.7

38.4
44.8

180.2
87.7
42.5

beam 1

0 50 100 150 200 250

6.5
13.2

13.4
144.3
215.4
156.2

35.2
53.1

43.7
51.4

205.3
103.0
49.7

beam 2

0 50 100 150 200 250

12.7
12.9

139.9
208.1
152.1

34.3
51.0

42.3
50.0

199.0
100.7
48.7

beam 3

0 50 100 150 200 250

12.7
12.9

139.9
208.1
152.1

34.3
51.0

42.3
50.0

199.0
100.7
48.7

beam 4

0 50 100 150 200 250

6.5
13.2

13.4
144.3
215.4
156.2

35.2
53.1

43.7
51.4

205.3
103.0
49.7

beam 5

0 50 100 150 200 250

12.0
12.2

126.7
189.2
135.8

30.9
47.7

38.4
44.8

180.2
87.7
42.5

beam 6

0 50 100 150 200 250

6.3
6.7

60.6
91.0
64.8

14.5
23.3

17.8
20.7

86.0
37.5
18.6

beam 7

Figure 39: One output cube with radar data

6.3.1 Imports

We import the necessary libraries, such as QuickCheck the two AESA model implementations
AESA.CubesAtom and AESA.StreamsAtom, some ForSyDe-Atom libraries and a couple of other utility
libraries. We use the data generators defined in the Generators module defined in section 5.2.4.

28 import Test.QuickCheck as QC
29 import Test.QuickCheck.Function
30 import Test.Framework
31 import Test.Framework.Providers.QuickCheck2 (testProperty)
32

33 import ForSyDe.Atom.Skel.FastVector as V
34 import ForSyDe.Atom.MoC.SY as SY
35 import ForSyDe.Atom.MoC.SDF as SDF
36 import ForSyDe.Atom.Skel.FastVector.Matrix as M (transpose)
37 import ForSyDe.Atom.Skel.FastVector.Cube as C (Cube, transpose, transpose')
38

39 import AESA.CubesAtom as AESAC
40 import AESA.StreamsAtom as AESAS
41 import AESA.Params
42

43 import Generators
44 import Data.List as L
45 import Data.Complex

6.3.2 Properties

Perhaps the most noticeable transformation has been performed on the DBF module, since all the
primitive operations performed by the vector-matrix dot product have become synchronous processes
instead. In order to show that the two models are in fact sematically equivalent with respect to the values
and their structured order, but not necessarily to the causal order or time implications, we formulate
a property which degrades the signals and vectors to lists and compares them. Lists do not capture
any temporal or spatial semantics, but they do have a clearly-defined ordering relation, which is equally
valuable in our case. The formulations below follow the notation from section 5.1, and we denote the

55

http://hackage.haskell.org/package/QuickCheck

vector dimensions Rn for range, Wn for window, An for antenna, Bm for beam and Ps for pulse.

∀c ∈ 〈〈〈C〉Rn〉Wn〉An ⇒ ΣAn→Wn→Rn(dbfcube(c)) = ΣAn→Wn→Rn(dbfstream(c)) (17)

66 prop_dbf_transf_equiv = forAll (sigOfSmallCubes arbitrary) $ \sc -> same (cbRes sc) (stRes sc)
67 where
68 -- Compare all the values in the resulting nested lists
69 same c s = (all . all) id $ (zipWith . zipWith) (==) c s
70 -- Results of the cube version of DBF as nested lists. Outputs are re-arranged
71 cbRes sc = toLists $ V.farm11 unroll $ V.unzipx $ SY.comb11 C.transpose' $ AESAC.dbf sc
72 -- Results of the stream version of DBF as nested lists. Inputs are re-arranged
73 stRes sc = toLists $ AESAS.dbf $ V.farm11 unroll $ V.unzipx sc
74 -- Transforms a vector of signals into a list of lists
75 toLists = map SY.fromSignal . V.fromVector
76 -- Flattens a signal of matrices into a signal of ordered samples
77 unroll = SY.signal . concatMap (concatMap fromVector . fromVector) . SY.fromSignal

Let us now test the transformed PC block for the same property. Although the innermost operation is
still fir, we would like to make sure that changing the MoC domain of the process from SY (on vectors)
to SDF (on tokens) did affect in any way the ordering (and values) of the data.

∀c ∈ 〈〈〈C〉Rn〉Wn〉Bm, r ∈ cRn : |r| = Nb ⇒ ΣBm→Wn→Rn(pccube(c)) = ΣBm→Wn→Rn(pcstream(c)) (18)

90 -- We need an custom generator for cubes with 'nb'-sized range vectors
91 sigOfRnCubes :: Gen (SY.Signal (C.Cube (Complex Float)))
92 sigOfRnCubes = do
93 rangeL <- elements [nb] -- range vector needs to have exactly 'nb' samples
94 windowL <- choose (2, 10)
95 beamL <- choose (2, 10)
96 sigData <- listOf1 $ sizedCube beamL windowL rangeL arbitrary
97 return (SY.signal sigData)

99 prop_pc_transf_equiv = forAll sigOfRnCubes $ \sc -> same (cbRes sc) (stRes sc)
100 where
101 -- Compare all the values in the resulting nested lists
102 same c s = (all . all) id $ (zipWith . zipWith) (==) c s
103 -- Results of the cube version of DBF as nested lists. Outputs are re-arranged
104 cbRes sc = syToLst $ V.farm11 unroll $ V.unzipx
105 -- inverse the transposes during DBF and PC, align cubes with streams
106 $ SY.comb11 M.transpose $ AESAC.pc $ SY.comb11 C.transpose sc
107 -- Results of the stream version of DBF as nested lists. Inputs are re-arranged
108 stRes sc = sdfToLst $ AESAS.pc $ V.farm11 unroll $ V.unzipx sc
109 -- Transforms a vector of signals into a list of lists
110 syToLst = map SY.fromSignal . V.fromVector
111 sdfToLst = map SDF.fromSignal . V.fromVector
112 -- Flattens a signal of matrices into a signal of ordered samples
113 unroll = SY.signal . concatMap (concatMap fromVector . fromVector) . SY.fromSignal

N.B.: after a few iterations we realized that the property prop_pc_transf_equiv would not hold
∀c ∈ 〈〈〈C〉〉〉 because of the consumption rules of SDF.comb11. The streaming version of PC would not
produce the same result as the cube version had the Rn dimension not been an integer multiple of the
consumption rate Nb, simply because if there are not enough tokens at the input, a SDF actor does not
execute, whereas a scalable vector operation is evaluated regardless of how many elements it operates on.
We thus had to adjust the property in eq. 18 accordingly having this insight, which means that we restrict
the legal inputs pool to fit more to the specifications in section 2.2.4, otherwise we cannot guarantee the
property above.

When evaluating the corner turning (CT) it is now easier to verify the 50% overlap because we have
access to the streams directly. We thus formulate the property

∀a large enough, v ∈ 〈α〉Wn : |v| = NFFT ∧ ct(a) = (vright, vleft)⇒ vright[i] = vleft[i+ NFFT
2] (19)

56

134 -- We need a generator for signals of size larger than 'nFFT/2'
135 largeSigs :: Gen (SDF.Signal Int)
136 largeSigs = do
137 n <- choose (nb * nFFT `div` 2, nb * nFFT)
138 sigData <- vectorOf n arbitrary
139 return (SDF.signal sigData)

141 prop_ct_50_overlap = forAll largeSigs $ \s -> over (AESAS.procCT s)
142 where
143 over (rc,lc) = all id $ SDF.fromSignal
144 $ SDF.actor21 ((nFFT,nFFT), nFFT `div` 2, overF) rc lc
145 overF rl ll = zipWith (==) rl (L.drop (nFFT `div` 2) ll)

For the rest of the blocks, DFB, CFAR and INT we can follow the model set by prop_pc_transf_equiv
to formulate properties testing for functional equivalence. We only mention these properties as formulas,
and we leave the writing of the QuickCheck code as an exercise to the reader.

∀c ∈ 〈〈〈C〉Wn〉Rn〉Bm, w ∈ cWn : |w| = NFFT ⇒ ΣBm→Rn→Ps(dfbcube(c)) = ΣBm→Rn→Ps(dfbstream(c)) (20)

∀c ∈ 〈〈〈C〉Ps〉Rn〉Bm, w ∈ cWn, r ∈ cRn : |w| = NFFT∧|r| = Nb ⇒ ΣBm→Rn→Ps(cfarcube(c)) = ΣBm→Rn→Ps(cfarstream(c))
(21)

∀c1, c2 ∈ 〈〈〈C〉〉〉 ⇒ Σ(intcube(c1, c2)) = Σ(intstream(c1, c2)) (22)

6.3.3 Main function. Test Suite Results

We gather the QuickCheck properties defined above into one runnable suite:

173 tests :: [Test]
174 tests = [
175 testGroup " Stream HL Model Tests "
176 [testProperty "DBF transformation preserves the order of elements "
177 (withMaxSuccess 50 prop_dbf_transf_equiv)
178 , testProperty "PC transformation preserves the order of elements "
179 (withMaxSuccess 20 prop_pc_transf_equiv)
180 , testProperty "CT 50% overlap "
181 (withMaxSuccess 20 prop_ct_50_overlap)
182]
183]

185 main :: IO()
186 main = defaultMain tests

which we execute, as per the instructions in the project’s README file. Since we are generating random
tests on cubes of noticeable dimensions, the execution time is also quite long, hence the smaller number
of test cases generated per suite. The expected printout is:

aesa-atom-0.1.0.0: test (suite: tests-stream)

Stream HL Model Tests :
DBF transformation preserves the order of elements : [OK, passed 50 tests]
PC transformation preserves the order of elements : [OK, passed 20 tests]
CT 50% overlap : [OK, passed 20 tests]

Properties Total
Passed 3 3
Failed 0 0
Total 3 3

aesa-atom-0.1.0.0: Test suite tests-stream passed

57

This means that, at least when concerning the functionality of the AESA signal video processing chain,
we have not introduced any unwanted flaws with our model refinement process. We also have a better
understanding of the conditions and restrictions within which the new refined model operates as expected.

6.4 Conclusion

In this section we have presented an alternative model of the AESA signal processing chain which refines
its behavior in order to expose its streaming characteristics inferred from the specification statement “For
each antenna the data arrives pulse by pulse, and each pulse arrives range bin by range bin. This happens
for all antennas in parallel, and all complex samples are synchronized with the same sampling rate, e.g. of
the A/D converter.” While still regarded from a high abstraction level (e.g. SDF actors are assumed
to execute “instantaneously” once they have enough data to operate on), the refined processing blocks
now describe a more fine-grained causal ordering between individual samples arriving in streams. This
enables their potential of better resources exploitation (e.g. hardware/software pipelining, or distribution)
during future mapping, scheduling and synthesis design stages. We have (unit) tested this refined model
against the high-level “golden model” presented in section 2, by confronting the two models’ responses
against the same set of input stimuli. We have also formulated a couple of properties to ensure that the
functional description of some of the blocks is still the expected one, and we have not introduced hidden
bugs, or rather flaws in the model description.

In the following section we plan to synthesize one functional block down to VHDL code targeting FPGA
hardware implementation. This means that we will continue gradually refining the (sub-)system model
until we reach enough detail level to start the code synthesis process. As each refinement process is
prone to introducing hidden mistakes or logical flaws due to its nonsemantic-preserving nature, we will
monitor the correctness of the resulting artifact with the help of the existing, as well as newly-formulated,
properties.

58

7 Model Synthesis to VHDL

In this section we choose one sub-system in the AESA signal processing stage and gradually
refine to synthesizable VHDL code, by applying a series of semantic- and nonsemantic-
preserving transformations. In order to validate the resulting design we gradually wrap each
refined component in order to co-simulate it with the original model, test it against the same
input data as the previous sections, and formulate design properties that ensure the desired
behavior is preserved. As input model we use the refined streaming behavior from section 6 and
we focus only on its PC stage. Throughout this section we will introduce another framework
in the ForSyDe ecosystem: ForSyDe-Deep, which is able to parse an input ForSyDe program
and translate it to different backends.

Package aesa-deep-0.1.0 path: ./aesa-deep/README.md
Deps forsyde-atom-0.3.1 url: https://forsyde.github.io/forsyde-atom/api/

forsyde-deep-0.2.1 url: http://hackage.haskell.org/package/forsyde-deep
note: 0.2.1 is found in a local experimental branch.

QuickCheck-2.13.1 url: http://hackage.haskell.org/package/QuickCheck
Suite tests-deep usage: stack test :tests-deep
Bin aesa-deep usage: aesa-deep --help

The system in section 6, although exposing a more fine-grained streaming behavior for each data channel,
is still far from a physical realization. In order to reach a suitable implementation one has to take into
consideration a multitude of aspects from one or several target platforms (architectures), which form
the design space. Mapping a behavior onto a platform often involves a (series of) transformation(s) that
do not fully preserve the original semantics any longer, yet still offer a good realization of the intended
behavior. We call these nonsemantic-preserving transformations (Raudvere, Sander, and Jantsch 2008).

In this section we will focus on synthesizing the PC signal processing stage, as specified in section 1.1 and
modeled in section 6.1, into an FPGA component. We do that by applying four subsequent refinement
phases, guided by design decisions to reach a correct and/or efficient implementation. Each decision is
tested against a set of properties as introduced in section 5, and each refined component is co-simulated
within the entire AESA high-level model.

7.1 Refinement 1: Untimed MAV to Timed FIR

The first refinement comes from the observation that the PC block from section 6.1, although operating on
streams, exposes an instantaneous, untimed behavior over fixed sized-vectors of numbers. In other words,
the SDF process associated with a channel’s PC stage is more concerned that a moving average (MAV)
algorithm is applied on a vector of Nb samples as soon as they arrive, but it is not really concerned on how
the MAV is performed. This type of under-specification can derive a family of possible implementations,
but does not bide well with the register transfer level (RTL) style of modeling specific to hardware
implementations, which requires a more specific total order between actions. For example, translating
the “instantaneous” MAV function (i.e. fir (mkPcCoef pcTap)) word-by-word into RTL would create
a terribly un-efficient and wasteful circuit! Luckily, we have already seen a similar, more fine-grained
streaming behavior for the same MAV function in section 2.2.2.6, and respectively section 6.1.2.5, namely
the n-tap systolic FIR structure created with the fir' skeleton8.

7.1.1 Model

In this first refinement phase we translate the SDF process procPC from section 6.1.2.2 into systolic
network of SY processes procPC' much more appropriate and efficient for RTL-based implementations.

26 module AESA.PC.R1 where

Customary, we import the needed modules from the ForSyDe.Atom suite:
8in fact both fir and fir' derive from the same catamorphism. For a formal proof check (Ungureanu et al. 2019).

59

30 import ForSyDe.Atom.MoC.SY as SY
31 import ForSyDe.Atom.MoC.SDF as SDF
32 import ForSyDe.Atom.Skel.FastVector as V
33 import ForSyDe.Atom.Skel.FastVector.DSP (fir')

To make sure we use exactly the same coefficients and constants as the ones used with the high-level
model in section 6.1, we import them directly from the aesa-atom package.

39 import AESA.Coefs (mkPcCoefs)
40 import AESA.Params (pcTap, nb)

Lastly, we need to import the Complex type.

44 import Data.Complex

First we define the coefficients which will be used throughout all the refinement phases. If you read the
API documentation of fir' you will see that the order of application of FIR tap processes is from right
to left, thus we need to reverse the order of PC coefficients.

51 coefsR1 :: Fractional a => Vector a
52 coefsR1 = V.reverse $ mkPcCoefs pcTap

Then we define the interface for the PC’ stage, which is the same as for PC in section 6.1.2.2. This means
that, as far as the type checker is concerned, we can simply replace pc with pc' in the original high level
model and simulate as part of the entire AESA signal processing chain.

59 pc' :: Vector (SY.Signal (Complex Float))
60 -> Vector (SDF.Signal (Complex Float))
61 pc' = farm11 (SY.toSDF1 . procPC')

the procPC' process is, as mentioned earlier, a SY fir' process network which defines a particular timed
(in the causality sense) behavior for the SDF procPC in section 6.1.2.2.

OBS: for didactic purpose, we define procPC' as an instance of a custom process constructor pcFIR
defined below. The role of pcFIR is to decouple whatever happens in the function layer9 from the layers
above. This will come in handy in the next refinement phase, which affects only the function layer, and
thus we can reuse the same code patterns from this module.

resetDly

countReset snd (0, i)

SY.moore

resetDly

countReset snd (0, i)

SY.moore

resetDly

countReset snd (0, i)

SY.moore

mulP

×c

SY.comb

mulP

×c

SY.comb

mulP

×c

SY.comb

addP

+

SY.comb

addP

+

SY.comb

addP

+

SY.comb

· · ·

· · ·

· · ·

pcFIRfir’

recur

farm

reduce

〈×c1,×c2, · · · ,×ct〉 i +

Figure 40: The internals of the pcFIR process constructor

77 pcFIR :: (a -> a -> a) -- ˆ /function layer/ addition
78 -> (a -> a -> a) -- ˆ /function layer/ multiplication
79 -> a -- ˆ /function layer/ initial state
80 -> Vector a -- ˆ vector of coefficients
81 -> SY.Signal a -- ˆ input signal
82 -> SY.Signal a -- ˆ output signal
83 pcFIR sum mul initial coefs = fir' sumP mulP resetDly coefs
84 where
85 sumP = SY.comb21 sum

9recall what layers are in section 2.1

60

86 mulP c = SY.comb11 (mul c)
87 resetDly = SY.moore11 countReset snd (0,initial)
88 countReset (c,_) p | c == nb-1 = (0,initial)
89 | otherwise = (c+1,p)

When we change the time domain of the process we lose the information on the partial order between events.
In SY there is no MoC-induced mechanism that tells us when Nb events have been consumed/processed:
this mechanism needs to be hand-crafted. One solution is to embed a count-reset Moore state machine
inside each delay element associated with every FIR tap. This way, each Moore machine stores a counter
value ∈ [0, Nb) along with the previous complex sample, and would reset its state after after propagating
Nb samples.

Finally, we define procPC' by filling in the function layer entities needed by the pcFIR process constructor.

102 procPC' :: Fractional a
103 => SY.Signal a
104 -> SY.Signal a
105 procPC' = pcFIR (+) (*) 0 coefsR1

Function Original module Package
mealy11, comb11, comb21, toSDF1 ForSyDe.Atom.MoC.SY forsyde-atom
farm11 ForSyDe.Atom.Skel.FastVector forsyde-atom
fir' ForSyDe.Atom.Skel.FastVector.DSP forsyde-atom
mkPcCoefs AESA.Coefs aesa-atom
pcTap, nb AESA.Params aesa-atom

7.1.2 Simulation

As mentioned above, the PC’ component can be “plugged in” and used with the AESA signal processing
chain. Please refer to the project’s README file, respectively the binary help menu instructions, on how to
execute the model containing the PC’ block against the same test input data as the previous high-level
models. For the sake of space we do not include the output image, however we encourage the reader to
try it out and plot it herself. For now we can only assure you that it looks similar to Figure 39, except
for the detection values, whose (slight) differences are induced by floating point calculation errors.

7.1.3 Properties

The main property we want to test now is that the process procPC' defined above is sequence equivalent
with the original procPC from section 6.1.2.2 and hence, as of prop_pc_transf_equiv defined in eq. 17,
the PC’ stage is an exact functional replacement for the high-level PC operating on video cubes.

We define a new module as part of these refinements’ test suite:

10 {-# LANGUAGE PackageImports #-}
11 module TestR1 where

We need to be able to pack/unpack signals, so we import the SY and respectively SDF modules.

15 import ForSyDe.Atom.MoC.SY as SY
16 import ForSyDe.Atom.MoC.SDF as SDF

We import the QuickCheck DSL, along with a couple of local utilities, mainly arbitrary data type
generators.

21 import Test.QuickCheck
22 import Generators (largeSdfSigs, rationals)

Finally, we import the DUTs: the SDF procPC from the high-level streamed model and the SY procPC'
from Refinement 1.

61

https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-MoC-SY.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector.html
https://forsyde.github.io/forsyde-atom/api/ForSyDe-Atom-Skel-FastVector-DSP.html

27 import AESA.StreamsAtom as M1
28 import AESA.PC.R1 as R1

The property we need to test is

∀c ∈ C⇒ Σ(procPC(c)) = Σ(procPC′(c)) (23)

In order to test sequence equivalence between the two processes we need to take into account two very
important matters:

1. a SDF process’ output signal contains a number of elements which is a multiple of its production
rate, whereas a SY process does not have this restriction. Sequence equivalence means that both
output signals have the same initial segments, property which is handled by the zip list function.

2. floating point numbers cannot be used to test for equality, especially now since the order of operations
is different. Luckily we have defined both procPC and procPC', as well as their coefficient vectors as
polymorphic, thus as a practical alternative Complex Float (i.e. C), we can use Rational numbers
(i.e. Q) which have a strict notion of equality. Sequence equivalence over Q is sufficient to later
demonstrate through inference eq. 23.

54 prop_refine1_equiv = forAll (largeSdfSigs rationals) $ \s -> equiv s (SDF.toSY1' s)
55 where
56 equiv sdf sy = all (\(a,b) -> a == b) $ zip
57 (SDF.fromSignal $ M1.procPC sdf)
58 (SY.fromSignal $ R1.procPC' sy)

When running the test suite (refer to the README instructions) prop_refine1_equiv passes all tests,
which means that the two behaviors are compatible and PC’ can be used as source for further refinements.

7.2 Refinement 2: Floating Point to Q19

Due to it widespread usage with general purpose computing, IEEE floating point number representation is
the de-facto standard for non-integer numerical applications. However, although common and even taken
for granted in CPUs, floating point units are in general much larger and more expensive circuits than
their integer counterparts. Moreover, judging by the application specification in section 1.1, synthesizing
floating point arithmetics on FPGA would be overkill, because:

• we do not need a large span of numbers. On the contrary, the specification says that at the PC
stage the samples are within [−1− i, 1 + i), i.e. only decimals;

• according to tbl. 1, for the calculations within PC we do not need a precision higher than 20 bits.

Driven by these statements, we decide that a much more appropriate number representation for synthesizing
the PC signal processing stage to FPGA is the fixed point Q19 representation which, under the hood,
consists simply in integer calculations. We thus refine further the PC’ stage as to operate on complex fixed
point Q19 numbers instead of complex floating point numbers, or more specific refine only its function
layer to operate on this type of numbers.

7.2.1 Model

We code the second refinement in its own module.

28 {-# LANGUAGE PackageImports #-} --can be ignored
29 module AESA.PC.R2 where

We import the ForSyDe-Atom libraries that are used:

33 import ForSyDe.Atom.MoC.SY as SY
34 import ForSyDe.Atom.MoC.SDF as SDF
35 import ForSyDe.Atom.Skel.FastVector as V

62

We import the Complex type. However, unlike previously, we now use our in-house ForSyDe.Deep.Complex
module. This module is in fact re-exporting Data.Complex along with some additional instances which
makes it synthesizable, plus a couple of custom arithmetic operators (+:), (-:), (*:) which do not force
the base type of Complex a to be a part of RealFloat class (see Data.Complex API), but rather any
Num type.

45 import ForSyDe.Deep.Complex

We import our in-house fixed point data types. This module exports the usual types such as Fixed8,
Fixed16, Fixed32 and Fixed64. For this report we have extended the forsyde-deep package with
a custom (synthesizable) Fixed20 type, hard-coded across the full compiler stack. Future versions of
ForyDe-Deep will most likely support arbitrary-precision fixed point types using type-level numerals
instead, similar to FSVec, but for simple demonstration purposes Fixed20 suffices at the moment.

54 import ForSyDe.Deep.Fixed

Finally, we import the functions defined in the previous refinement stage.

58 import AESA.PC.R1 (coefsR1, pcFIR)

We translate the floating point FIR coefficients from the first refinement phase to Q19 complex numbers.

63 coefsR2 = V.farm11 ((:+0) . realToFixed20) coefsR1 :: Vector (Complex Fixed20)

For procPC'' we use the previously defined pcFIR process constructor whose function layer entities are
now replaced with operations over Complex Fixed20 numbers. This eases the validation process: we now
need to test only that the function layer refinements respect the specifications, and not the whole system.

70 procPC'' :: SY.Signal (Complex Fixed20)
71 -> SY.Signal (Complex Fixed20)
72 procPC'' = pcFIR (+:) (*:) (0:+0) coefsR2

The PC’ ’ stage process (network) is the same one as in the previous refinement, except that it uses the
procPC'' as the base process.

77 pc'' :: Vector (SY.Signal (Complex Fixed20))
78 -> Vector (SDF.Signal (Complex Fixed20))
79 pc'' = farm11 (SY.toSDF1 . procPC'')

7.2.2 Simulation

In order to be able to “plug in” PC’ ’ into the AESA signal processing system, we need to wrap it so that
its type signature is the one expected. We thus define the following wrapper which translates the floating
point numbers fed into PC to fixed point Q19 and back:

88 wrapR2 f = farm11 (SDF.actor11 (1,1,(fmap . fmap) fixed20ToReal))
89 . f . farm11 (SY.comb11 (fmap realToFixed20))

which is then used to wrap pc'' so that it looks like pc.

93 wrappedPC'' :: Vector (SY.Signal (Complex Float))
94 -> Vector (SDF.Signal (Complex Float))
95 wrappedPC'' = wrapR2 pc''

The effect of the refined PC’ ’ signal processing stage can be observed by simulating the AESA application
instantiating wrappedPC''. Please refer to the project’s README file on how to execute the program. When
plotting the results against the same input data, we can see that the same 13 objects are detected, albeit
having different numerical values.

7.2.3 Properties

In the second refinement phase the properties target mainly the translations between the floating point
and fixed point representations. We define a new module with the usual preamble:

63

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Complex.html

7 {-# LANGUAGE PackageImports #-}
8 module TestR2 where

10 import ForSyDe.Atom.MoC.SY as SY
11 import ForSyDe.Atom.MoC.SDF as SDF
12 import ForSyDe.Atom.Skel.FastVector (farm11)
13 import Test.QuickCheck
14 import ForSyDe.Deep.Complex
15 import ForSyDe.Deep.Fixed

17 import Generators (sySignals, decimalCpxNum, decimalCpxRat)
18 import AESA.PC.R1 as R1
19 import AESA.PC.R2 as R2
20 import AESA.Params (pcTap)

The first property we check is that even when wrapped (i.e. going through two translations), the procPC''
does not overflow its legal input/output value range, i.e. [−1− i, 1 + i). For this we write a local process
wrapper wrapProc.

∀v ∈ 〈C〉, a ∈ v, b ∈ procPC′′(v) : |v| > 0 ∧ a ∈ [−1− i, 1 + i)⇒ b ∈ [−1− i, 1 + i) (24)

29 prop_refine2_values = forAll (sySignals decimalCpxNum)
30 $ \s -> all (withinRangeComplex (-1) 1)
31 $ SY.fromSignal $ wrapProc R2.procPC'' $ s
32 where
33 wrapProc p = SY.comb11 (fmap fixed20ToReal) . p . SY.comb11 (fmap realToFixed20)
34 withinRangeComplex a b c
35 | realPart c < a = False
36 | imagPart c < a = False
37 | realPart c >= b = False
38 | imagPart c >= b = False
39 | otherwise = True

The second property we want to test is that the cumulative quantization error stays within a constant,
accepted range. Again, we cannot use floating point numbers as samples for comparison, due to the
dynamic quantization error of their own representation. As before, we fall back to rationals which
constitute a good model. The cumulative error for one PC’ ’ channel, supposing that both multiplications
and addition results are truncated back to Q19, can be calculated with:

ε = εQ19 ∗Ntap = 2−19 ×Ntap
52 prop_refine2_error = forAll (sySignals decimalCpxRat)
53 $ \s -> all acceptable $ zip (rationalPcVals s) (fixed20PcVals s)
54 where
55 rationalPcVals s = SY.fromSignal $ procPCRationals s
56 fixed20PcVals s = SY.fromSignal $ procPC'' $ SY.comb11 (fmap realToFixed20) s
57 procPCRationals = pcFIR (+:) (*:) (0:+0) (farm11 ((:+0) . realToFrac) coefsR1)
58 -----------------------------------
59 acceptable (rat, f20) = let rp = abs (realPart rat - (fixed20ToReal $ realPart f20))
60 ip = abs (imagPart rat - (fixed20ToReal $ imagPart f20))
61 in rp <= epsilon && ip <= epsilon
62 epsilon = (realToFrac pcTap) * 2ˆˆ(-19)

Notice that we have instantiated a clone procPC'' which works on rational numbers called
procPCRationals using the pcFIR process constructor. We needed this process to compare the rational
outputs against the fixed point ones.

7.3 Refinement 3: Deep Language Embedding

In this refinement phase we translate the PC’ ’ system defined in the previous phase to a language more
appropriate for synthesis. Up until now we have used the shallow-embedded DSLs of ForSyDe, namely

64

ForSyDe-Atom and ForSyDe-Shallow. In this section we will start using ForSyDe-Deep, a deep-embedded
DSL, capable of extracting a system’s internal structure as a netlist and synthesizing it to different
backends (at present GraphML and VHDL).

7.3.1 Quick Introduction to ForSyDe-Deep

ForSyDe-Deep was originally created as a replacement for ForSyDe-Shallow. It provides a sub-set of
the ForSyDe-Shallow language and, in principle, is based on the same modeling concepts. However its
deep-embedded features (such as netlist traversing and language parsing) makes it much more verbose
than its shallow counterparts. This is why its syntax appeals less to new users, hence it became it a
fall-back framework for synthesis purposes only. Nevertheless translating from a shallow ForSyDe model
to a deep one is straightforward, once you understand the principles listed as follows. For more on
ForSyDe-Deep modeling, refer to the beginner tutorials on the ForSyDe homepage.

composite process

Process1

function(s)

process constructor

Process1

function(s)

process constructor

Process2

function(s)

process constructor

System1 [port names]

system definition

composite process

P1 Instance1

system instance

Process1 [port names]

system definition

Process1

function wrapper

function(s)

process constructor

P1 Instance2

system instance

Process1 [port names]

system definition

Process1

function wrapper

function(s)

process constructor

P2 Instance1

system instance

Process2 [port names]

system definition

Process2

function wrapper

function(s)

process constructor

Figure 41: The difference between a shallow ForSyDe system (left) and a deep one (right)

• process functions are parsed to their AST using a language extension of Haskell called Template-
Haskell. The function parser is able to recognize a subset of the Haskell language written between
the so-called banana brackets [d| function |], and needs to explicitly specify its type signature.
Whatever code is written within the banana brackets is parsed as-is and needs to be self-contained,
i.e. information cannot be inferred from global/system-wide definitions. In order to instantiate a
parsable ForSyDe-Deep function from a Haskell function, it needs to be wrapped into a ProcFun
type, using one of the function wrappers provided by the API.

• processes are instantiated using the ForSyDe-Deep equivalents of the main ForSyDe-Shallow SY
process constructors. The main difference is that they need a string identifier as well as ProcFun-
wrapped functions instead of regular Haskell functions.

• in order to be able to simulate, parse or synthesize a process, it needs to be wrapped within a SysDef
type, similarly to parsable functions, using one of the API-provided system definition wrappers.
These system wrappers, apart from a fully applied process, need also a unique string identifier for
the new system, as well as name identifiers for all its input and output ports.

• in order to use a defined system hierarchically as a component, it needs to be instantiated back to a
composable function. A process instance needs a unique name identifier, as well as a SysDef object.

N.B.: That is quite a mouthful of wrappers and, as you will see in the PC example below, it implies a
quite some unpleasant verbosity, especially for one used to the elegant compactness of Haskell programs.
Future iterations of the ForSyDe language will most likely have a unified syntax and translation from
shallow (for efficient simulation) to deep (for structure parsing and synthesis) versions will be done
automatically. For now the current (type-extended) version of ForSyDe-Deep suffices for demonstration
purposes since the modeling principles are the same no matter the frontend language.

65

https://forsyde.github.io/forsyde-deep/
http://hackage.haskell.org/package/forsyde-deep-0.2.0/docs/ForSyDe-Deep-Process.html
http://hackage.haskell.org/package/forsyde-deep-0.2.0/docs/ForSyDe-Deep-Process-SynchProc.html
http://hackage.haskell.org/package/forsyde-deep-0.2.0/docs/ForSyDe-Deep-Process-SynchProc.html
http://hackage.haskell.org/package/forsyde-deep-0.2.0/docs/ForSyDe-Deep-System.html
http://hackage.haskell.org/package/forsyde-deep-0.2.0/docs/ForSyDe-Deep-System.html

7.3.2 Model

We create a new module for this refinement phase. The TemplateHaskell and FlexibleContexts
language extensions are mandatory.

69 {-# LANGUAGE PackageImports, TemplateHaskell, FlexibleContexts #-}
70 module AESA.PC.R3 where

We import some ForSyDe-Atom types, only for co-simulation wrapping.

74 import qualified ForSyDe.Atom.MoC.SY as SY
75 import qualified ForSyDe.Atom.MoC.SDF as SDF
76 import qualified ForSyDe.Atom.Skel.FastVector as V

We import the ForSyDe-Deep libraries. The ForSyDe.Deep.Skeletons library belongs to the package
extension built for this case study and contains a couple of deep-embedded (synthesizable) skeletons, as
presented in sections 2, 6.

82 import ForSyDe.Deep
83 import ForSyDe.Deep.Skeleton as Sk

We need some additional type libraries. Data.Param.FSVec defines fixed-size vectors as compared to
the shallow vectors used until now, e.g. ForSyDe.Atom.Skel.FastVector. Fixed-size vectors have their
length captured in the type signature as type-level numerals imported from Data.TypeLevel.Num. For
example (FSVec D8 a) denotes a fixed-size vector of type a, with the size of 8 elements. We also use list
functions, thus we can tell their functions apart by loading the two libraries using different aliases.

93 import Data.List as L
94 import Data.Param.FSVec as FSV
95 import Data.TypeLevel.Num hiding ((+), (-), (==))

Finally, we import some functions from the previous refinement phase, as well as some system constants.

100 import AESA.PC.R2 (coefsR2, wrapR2)
101 import AESA.Params (nb)

For starters, let us define the adder process used in the fir' skeleton. According to the crash course in
section 7.3.1 we need to gradually wrap its elements until it becomes a system definition SysDef. First,
we need to declare a ProcFun element from a Haskell addition function. As already mentioned, whatever
is written between the banana brackets needs to be self-contained. This means that the Num type instance
of Complex which overloads the (+) operator is not of much use here. Complex number addition needs to
be explicitly written so that the parser know what to synthesize (N.B. type class support is listed among
the “todo” items of future ForSyDe language versions).

113 addFun :: ProcFun (Complex Fixed20 -> Complex Fixed20 -> Complex Fixed20)
114 addFun = $(newProcFun
115 [d|addf :: Complex Fixed20 -> Complex Fixed20 -> Complex Fixed20
116 addf (x :+ y) (x' :+ y') = (x + x') :+ (y + y') |])

The addition process is created by passing an identifier and the newly defined ProcFun to the process
constructor zipWithSY (i.e. the equivalent of SY.comb21 in ForSyDe-Atom).

122 addProc :: Signal (Complex Fixed20)
123 -> Signal (Complex Fixed20)
124 -> Signal (Complex Fixed20)
125 addProc = zipWithSY "addProc" addFun

From this process we create the component identified as "add", with two input ports "i1" and "i2" and
an output port "o1".

130 addSys :: SysDef (Signal (Complex Fixed20)
131 -> Signal (Complex Fixed20)
132 -> Signal (Complex Fixed20))
133 addSys = newSysDef addProc "add" ["i1","i2"] ["o1"]

66

Similarly, we define the "mul" component, but this time in one go. Notice again the expanded complex
number multiplication. Instead of the normal multiplication operator (*) we use the in-house fixmul20
function, which multiplies two Q19 numbers and truncates the result back to Q19. In the shallow simulation
fixmul20 ≡ (*), but in the deep version fixmul20 synthesizes to a custom VHDL std_vector function
instead of the regular VHDL * operator.

142 mulSys :: SysDef (Signal (Complex Fixed20)
143 -> Signal (Complex Fixed20)
144 -> Signal (Complex Fixed20))
145 mulSys = newSysDef (zipWithSY "mulProc" mulFun) "mul" ["i1","i2"] ["o1"]
146 where
147 mulFun = $(newProcFun
148 [d|mulf :: Complex Fixed20 -> Complex Fixed20 -> Complex Fixed20
149 mulf (x :+ y) (x' :+ y') = (fixmul20 x x' - fixmul20 y y') :+
150 (fixmul20 x y' + fixmul20 y x') |])

The reset-delay FSM used as a delay element in the fir' pattern needs also to be defined as a component.
We define the "rDelay" component using the mooreSY process constructors, taking two ProcFuns for the
next state function countReset and output decoder propagate. We fix the counter value type to be
Int16. The globally-defined nb (i.e. the number of range bins Nb) cannot be recognized as-is inside the
banana brackets, and for now all we can do is to write the number explicitly. (N.B. support for partial
function application is listed among the “todo” items of future ForSyDe language versions).

161 rDelaySys :: SysDef (Signal (Complex Fixed20) -> Signal (Complex Fixed20))
162 rDelaySys = newSysDef (mooreSY "rDelayProc" countReset propagate(0, 0 :+ 0))
163 "rDelay" ["i1"] ["o1"]
164 where
165 countReset = $(newProcFun
166 [d|cntf :: (Int16,Complex Fixed20) -> Complex Fixed20
167 -> (Int16,Complex Fixed20)
168 cntf(c,_) p = if c == 1024-1
169 then (0, 0 :+ 0)
170 else (c+1,p) |])
171 propagate = $(newProcFun
172 [d|prpf :: (Int16,Complex Fixed20) -> Complex Fixed20
173 prpf (_,p) = p |])

Because partial application is not yet supported we need to instantiate the vector of coefficients into a
farm of constSY signal generators. We thus create the “system constructor”:

179 constSys :: ProcId -> Complex Fixed20 -> SysDef (Signal (Complex Fixed20))
180 constSys name c = newSysDef (constSY "const" c) name ["i1"] ["o1"]

which we then use as argument for the app11 skeleton (which is in fact a farm11 tailored for partial
application only) to instantiate a farm of constant signal generators, i.e. a vector of constant signals. The
coefficients are interpreted into a FSVec from their shallow counterparts defined in the second refinement
phase.

187 coefsR3 = Sk.app11 "coef" constSys coefs
188 where
189 coefs = $(vectorTH (V.fromVector coefsR2 :: [Complex Fixed20]))

OBS: ForSyDe-Deep skeletons, as compared to their shallow counterparts, take care of creating instances
(see Figure 41) of defined systems as well as coupling them together. This is why they need components
as arguments instead of simple functions.

Now, for didactic purpose, let us define ForSyDe-Deep equivalent of the fir' skeleton using the base
catamorphisms recur (or its specialization generate), farm and reduce. We call this process network
constructor deepFIR and, as you can see, it is defined similarly to its shallow counterpart, with a few
exceptions: 1) it expects a base identifier, to create unique IDs for all the generated component instances;
2) it takes SysDef components instead of processes as arguments; 3) for coefficients it requires a fixed-size
vector of strictly positive size, containing constants.

67

205 deepFIR :: (SysFun (a -> a -> a), SysFun (c -> a -> a), SysFun (a -> a),
206 Pos s', Succ s' s)
207 => ProcId -- ˆ system ID
208 -> SysDef (a -> a -> a) -- ˆ process/operation replacing '+'
209 -> SysDef (c -> a -> a) -- ˆ process/operation replacing '*'
210 -> SysDef (a -> a) -- ˆ delay process
211 -> FSVec s c -- ˆ vector of coefficients
212 -> a -- ˆ input signal/structure
213 -> a -- ˆ output signal/structure
214 deepFIR name addSys mulSys dlySys coefs =
215 Sk.reduce addName addSys . Sk.farm21 mulName mulSys coefs . Sk.generate dlyName n dlySys
216 where n = lengthT coefs
217 dlyName = name L.++ "_dly_"
218 addName = name L.++ "_add_"
219 mulName = name L.++ "_mul_"

We finally can define a component for the deep equivalent of procPC using the deepFIR process network
constructor, by passing the above-defined components as arguments.

225 procPCSys :: SysDef (Signal (Complex Fixed20)
226 -> Signal (Complex Fixed20))
227 procPCSys = newSysDef (deepFIR "fir" addSys mulSys rDelaySys coefsR3)
228 "FIR" ["i1"] ["o1"]

and the deep equivalent of the PC process, statically defining its size as a type-level numeral equal to Nb
233 pc3 :: FSVec D8 (Signal (Complex Fixed20))
234 -> FSVec D8 (Signal (Complex Fixed20))
235 pc3 = Sk.farm11 "pc" procPCSys

with its associate system definition. Unfortunately, at the moment processes of type FSVec a (Signal
a) -> ... are not part of the SysFun class, thus we cannot create directly a SysDef components from
pc3. What wee can do however is to wrap pc3 inside a zipx . pc . unzipx pattern which merely
transposes the vector and signal domains, and the synthesizer will simply ignore it. (N.B. vector-based
components will be supported in future iterations of ForSyDe).

244 sysPC3 = newSysDef (zipxSY "zip" . pc3 . unzipxSY "unzip") "PC3" ["i1"] ["o1"]

7.3.3 Simulation. Synthesis

Similarly to the previous refinement stages, we further wrap the PC component in order to co-simulate it
with the rest of the AESA system. To simulate a ForSyDe-Deep SysDef component we use the simulate
function

252 wrappedPC3 :: V.Vector (SY.Signal (Complex Float))
253 -> V.Vector (SDF.Signal (Complex Float))
254 wrappedPC3 = wrapR2 (wrapR3 (simulate sysPC3))

where wrapR3 translates between the shallow ForSyDe-Atom types and the component simulator types.

259 wrapR3 sim = V.vector . L.map SDF.signal . L.transpose . L.map FSV.fromVector . sim
260 . L.map (FSV.unsafeVector d8) . L.transpose . L.map SY.fromSignal . V.fromVector

Please refer to the project’s README file for how to execute the AESA system alongside the deep pc3
component. The plotted output for running the system against the radar indata generated by the 13
objects is shown in Figure 42.

The PC(3) component is not only able to be simulated, but we can also parse its internal structure. Here
we call the command which dumps the internal structure of sysPC3 as hierarchical GraphML files, as
seen in the plots in Figure 43.

272 graphmlPC3 = writeGraphML sysPC3

68

0 100 200

0

200

400

600

800

1000

59.6
88.6
63.8

16.1
21.4

18.6
21.8

86.1
39.4
20.2

beam 0

0 100 200

8.6
9.8

126.2
188.5
135.1

32.7
45.8

38.9
44.7

181.9
88.7
43.9

beam 1

0 100 200

7.4
9.2

11.4
144.5
216.6
153.6

37.2
52.5

44.0
50.7

207.2
104.0
50.9

beam 2

0 100 200

7.6
9.0

11.0
139.6
209.5
148.3

36.0
51.0

42.3
48.9

200.1
102.4
49.8

beam 3

0 100 200

7.6
9.0

11.0
139.6
209.5
148.3

36.0
51.0

42.3
48.9

200.1
102.4
49.8

beam 4

0 100 200

7.4
9.2

11.4
144.5
216.6
153.6

37.2
52.5

44.0
50.7

207.2
104.0
50.9

beam 5

0 100 200

8.6
9.8

126.2
188.5
135.1

32.7
45.8

38.9
44.7

181.9
88.7
43.9

beam 6

0 100 200

59.6
88.6
63.8

16.1
21.4

18.6
21.8

86.1
39.4
20.2

beam 7

Figure 42: One output cube with radar data

Figure 43: Dumped GraphML structure: PC (left); FIR (above right); rDelay (below right).

69

Of course, the whole point of writing ForSyDe-Deep is to synthesize to backend code, in this case to
synthesizable VHDL code. The following command generates a VHDL project folder with the PC
architecture files.

280 vhdlPC3 = writeVHDLOps (defaultVHDLOps {debugVHDL = VHDLVerbose}) sysPC3

Furthermore, one can simulate the VHDL files using ModelSim (or alternatively Ghdl), provided their
binaries are found in the system PATH. The following function can be wrapped as wrappedPC3 instead of
simulate sysPC3.

286 vhdlSim = writeAndModelsimVHDL Nothing sysPC3

Finally, we synthesize sysPC3 to FPGA using the Quartus II tool suite (provided its binaries are found
in PATH), e.g.:

291 quartusPC3 = writeVHDLOps vhdlOps sysPC3
292 where vhdlOps = defaultVHDLOps{execQuartus=Just quartusOps}
293 quartusOps = checkSynthesisQuartus

After synthesis it generated the RTL structures in Figure 44, with the specifications in tbl. 26.

Figure 44: Screenshots of synthesized RTL components: FIR (above); PC (below right); rDelay and mul
(below left).

Table 26: Specifications of generated FPGA design

Top-level Entity Name PC3
Family Cyclone IV GX
Total logic elements 3,014
Total combinational functions 3,014
Dedicated logic registers 976
Total registers 976

70

Table 26: Specifications of generated FPGA design

Total memory bits 0
Embedded Multiplier 9-bit elements 160
Total PLLs 0

7.3.4 Properties

The main property we want to check now is that the ForSyDe-Deep version of PC(3) is the same as PC’ ’
defined in the second refinement phase.

6 {-# LANGUAGE PackageImports #-}
7 module TestR3 where

9 import ForSyDe.Atom.MoC.SY as SY
10 import Test.QuickCheck
11 import ForSyDe.Deep

13 import Generators (largeSySigs, cpxFixed20)
14 import AESA.PC.R2 as R2
15 import AESA.PC.R3 as R3

Since fixed point numbers can be compared exactly, we simply use the processes as they are, operating
on signals of Fixed20 numbers to test the property

∀c ∈ C⇒ Σ(procPC′′(c)) = Σ(simulate(procPCSys)(c)) (25)

26 prop_refine3_equiv = forAll (largeSySigs cpxFixed20)
27 $ \s -> all (\(a,b) -> a == b) $ zip
28 (SY.fromSignal $ R2.procPC'' s)
29 (simulate R3.procPCSys $ SY.fromSignal s)

Since the test passes flawlessly we can conclude that in the third refinement phase we have achieved
semantic equivalence between the components written in the two different languages.

7.4 R4: Balancing the FIR Reduction

The final refinement phase consists in performing some simple semantic-preserving transformations on
the previous model in order to optimize the efficiency of the generated circuit.

Two (rather evident) optimizations are considered in this phase:

• as seen in Figures 43, 44, as well as in Figure 40, the final stage of the pcFIR-instantiated process
network consists of a reduction pattern. This pattern is instantiated recursively, by taking the result
of the previous addition and applying it to the next one, thus generating a linear (O(n)) reduction
tree. However, the base operation performed, i.e. addition, is commutative, and a well-known
catamorphism theorem (see Ungureanu et al. (2019) for more details) states that the reduction can
in fact be performed as a balanced logarithmic (O(logn)) tree which means, in the case of digital
hardware designs, a shorter combinational critical path.

• having a counter in each delay element, although elegant and modular, is a terrible waste of silicon
when considering that all counters are counting the same thing: how many samples have passed. A
more reasonable design would take advantage of the identical part in all the "rDelay" components
(i.e. the counter), and separate from the non-identical part (i.e. the delay register).

The second optimization is identified and performed automatically by the Quartus compiler, hence the
specifications in tbl. 26 includes only one counter circuit for all the delay elements. Therefore we will only
focus on reduction tree balancing and leave the functional decoupling of the reset-counter as an exercise.

71

7.4.1 Model

The module for the forth refinement module is the following.

34 {-# LANGUAGE PackageImports, TemplateHaskell, FlexibleContexts #-}
35 module AESA.PC.R4 where

We import the same library as before:

39 import ForSyDe.Deep
40 import ForSyDe.Deep.Skeleton as Sk
41 import Data.List as L
42 import Data.Param.FSVec as FSV
43 import Data.TypeLevel.Num hiding ((+), (-), (==))
44

45 import AESA.PC.R2 (wrapR2)
46 import AESA.PC.R3 (wrapR3, coefsR3, addSys, mulSys, rDelaySys)

To instantiate the logarithmic reduction tree, it is enough to replace the reduce skeleton with the
logReduce skeleton in the previous deepFIR process network constructor.

52 balancedFIR name addSys mulSys dlySys coefs =
53 Sk.logReduce (name L.++ "_add_") addSys
54 . Sk.farm21 (name L.++ "_mul_") mulSys coefs
55 . Sk.generate (name L.++ "_dly_") n dlySys
56 where n = lengthT coefs

The new procPC system definition is created using the skeleton above.

60 procPCSys' :: SysDef (Signal (Complex Fixed20)
61 -> Signal (Complex Fixed20))
62 procPCSys' = newSysDef (balancedFIR "fir" addSys mulSys rDelaySys coefsR3)
63 "FIR" ["i1"] ["o1"]

We finally create the refined version of the AESA PC(4) signal processing stage

67 pc4 :: FSVec D8 (Signal (Complex Fixed20))
68 -> FSVec D8 (Signal (Complex Fixed20))
69 pc4 = Sk.farm11 "pc" procPCSys'

which is then declared as a component.

73 sysPC4 = newSysDef (zipxSY "zip" . pc4 . unzipxSY "unzip") "PC4" ["i1"] ["o1"]

7.4.2 Simulation. Synthesis

Similar to previous refinement phases, we wrap the PC(4) in order to co-simulate it with the high-level
AESA model. As expected, the AESA simulation using this component gives exactly the same results as
the previous simulation, shown in Figure 42.

82 wrappedPC4 = wrapR2 (wrapR3 (simulate sysPC4))

Dumping the internal structure of PC(4) shows in Figure 45 a more compact FIR structure, with a shorter
combinational depth, as well as one "rCount" component fanning out into all the delay elements.

88 graphmlPC4 = writeGraphMLOps (defaultGraphMLOps {yFilesMarkup = True}) sysPC4

The VHDL code can be generated

93 vhdlPC4 = writeVHDL sysPC4

simulated

97 vhdlSim = writeAndModelsimVHDL Nothing sysPC4
98 -- vhdlSim' = writeAndGhdlVHDL Nothing sysPC4 -- alternatively

or synthesized.

72

102 quartusPC4 = writeVHDLOps vhdlOps sysPC4
103 where vhdlOps = defaultVHDLOps{execQuartus=Just quartusOps}
104 quartusOps = checkSynthesisQuartus

The generated circuit has exactly the same size as the previous one (tbl. 27), however, the combinational
depth is visibly smaller, as seen in the RTL plot in Figure 46.

Figure 45: Dumped GraphML structure of the new FIR component

Figure 46: Screenshot of the RTL view of FIR

Table 27: Specifications of generated FPGA design

Top-level Entity Name PC4
Family Cyclone IV GX
Total logic elements 3,014
Total combinational functions 3,014
Dedicated logic registers 976
Total registers 976
Total memory bits 0
Embedded Multiplier 9-bit elements 160
Total PLLs 0

7.4.3 Properties

Here we test that the ForSyDe-Deep version of PC(4) is the same as PC(3) defined in the third phase.

6 {-# LANGUAGE PackageImports #-}
7 module TestR4 where

9 import ForSyDe.Atom.MoC.SY as SY

73

10 import Test.QuickCheck
11 import ForSyDe.Deep

13 import Generators (largeSySigs, cpxFixed20)
14 import AESA.PC.R3 as R3
15 import AESA.PC.R4 as R4

The property
∀c ∈ C⇒ Σ(procPCSys(c)) = Σ(procPCSys′(c)) (26)

is tested by the QuickCheck program

26 prop_refine4_equiv = forAll (largeSySigs cpxFixed20)
27 $ \s -> all (\(a,b) -> a == b) $ zip
28 (simulate R3.procPCSys $ SY.fromSignal s)
29 (simulate R4.procPCSys' $ SY.fromSignal s)

As all tests are passing (check the project’s README file on how to run tests), hence we can conclude that
PC(4) is a good replacement for the AESA PC stage.

7.5 Conclusions

In this section we have shown a series of design transformations on one of the high-level model components
of AESA down to synthesizable VHDL code. Along the way we have co-simulated the transformed
components alongside the original AESA high-level model, as well as gradually validated the final
generated design artifact is a proper implementation for its behavioural model.

The scope of this section was two-fold: on the one hand we have shown a practical and didactic example
and consolidated the design methodology introduced in the previous chapters; and on the other hand
we have provided a brief glance over the current status of some of the tools and their position in the
ForSyDe ecosystem, as well as directions for future development. As mentioned several times throughout
this document the ForSyDe ecosystem is actively being developed and the overall vision is to learn from
past and current experiences in order to achieve a correct-by-construction design flow.

Although all the designs shown in this report, both original and intermediate, were written manually,
the modeling frameworks have provided us with the means to understand which transformations can be
fully- or partially-automated in the future. For example refinement 3 should be invalidated by a unified
high-level, layered modeling language; refinement 4 could be done automatically once a program analyzer
understands that the core reduction operation is commutative; refinement 2 could be fully- or partially-
automated once a clear design specification or constraint language can be formulated and analyzed.
Refinement 1 though, as well as the transformation from the cube version of AESA in section 2 to the
streamed version in section 6 is not so trivial to automate. This is because the nonsemantic-preserving
transformations involved admit multiple (maybe better) solutions. Choosing between alternative solutions,
although aided by verification and validation techniques, often relies on designer experience. In the future
some of these decision could be automated or computer-aided by design space exploration techniques
once we understand how to formulate the search problems.

74

8 Acknowledgements

The authors would like to acknowledge Per Ericsson for his contributions in designing the AESA signal
processing chain (in Figure 2) and in writing the specifications.

This report was partially funded by the Swedish Governmental Agency for Innovation Systems, NFFP7
project: Correct-by-construction design methodology #2017-04892.

References

Backus, John. 1978. “Can Programming Be Liberated from the von Neumann Style?: A Functional Style
and Its Algebra of Programs.” Communications of the ACM 21 (8): 613–41. https://doi.org/10.1145/
359576.359579.

Benveniste, Albert, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert de
Simone. 2003. “The Synchronous Languages 12 Years Later.” Proceedings of the IEEE 91 (1): 64–83.

Bourke, Timothy, and Marc Pouzet. 2013. “Zélus: A Synchronous Language with Odes.” In Proceedings
of the 16th International Conference on Hybrid Systems: Computation and Control, 113–18.

Buck, J. T., and E. A. Lee. 1993. “Scheduling Dynamic Dataflow Graphs with Bounded Memory Using
the Token Flow Model.” In IEEE International Conference on Acoustics Speech and Signal Processing,
nil. https://doi.org/10.1109/icassp.1993.319147.

Claessen, Koen, and John Hughes. 2011. “Quickcheck: A Lightweight Tool for Random Testing of Haskell
Programs.” ACM SIGPLAN 46 (4): 53.

Fischer, Jörg, Sergei Gorlatch, and Holger Bischof. 2003. “Foundations of Data-Parallel Skeletons.” In
Patterns and Skeletons for Parallel and Distributed Computing, edited by Fethi A. Rabhi and Sergei
Gorlatch, 1–27. Springer London. https://doi.org/10.1007/978-1-4471-0097-3_1.

Hughes, John. 2007. “QuickCheck Testing for Fun and Profit.” In, 4354:1–32. https://doi.org/10.1007/
978-3-540-69611-7_1.

Hutton, Graham. 2016. Programming in Haskell. 2nd ed. New York, NY, USA: Cambridge University
Press.

Lee, Edward. 2015. “The Past, Present and Future of Cyber-Physical Systems: A Focus on Models.”
Sensors 15 (3): 4837–69. https://doi.org/10.3390/s150304837.

Lee, Edward A. 2018. “Models of Timed Systems.” In Formal Modeling and Analysis of Timed Systems,
edited by David N. Jansen and Pavithra Prabhakar, 17–33. Cham: Springer International Publishing.

Lee, Edward A. 2016. “Fundamental Limits of Cyber-Physical Systems Modeling.” ACM Transactions on
Cyber-Physical Systems 1 (1): 1–26.

Lee, Edward A, and Thomas M Parks. 1995. “Dataflow Process Networks.” Proceedings of the IEEE 83
(5): 773–801.

Lee, Edward A, and Alberto Sangiovanni-Vincentelli. 1998. “A Framework for Comparing Models of
Computation.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 17
(12): 1217–29.

Lee, Edward A., and Sanjit A. Seshia. 2016. Introduction to Embedded Systems: A Cyber-Physical
Systems Approach. Second Edition. MIT Press. http://leeseshia.org.

Lipovača, Miran. 2011. Learn You a Haskell for Great Good!: A Beginner’s Guide. 1st ed. San Francisco,
CA, USA: No Starch Press.

Raudvere, Tarvo, Ingo Sander, and Axel Jantsch. 2008. “Application and Verification of Local
Nonsemantic-Preserving Transformations in System Design.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 27 (6): 1091–1103.

75

https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579
https://doi.org/10.1109/icassp.1993.319147
https://doi.org/10.1007/978-1-4471-0097-3_1
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.3390/s150304837
http://leeseshia.org

Sander, I., and A. Jantsch. 2004. “System Modeling and Transformational Design Refinement in Forsyde.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 23 (1): 17–32.
https://doi.org/10.1109/tcad.2003.819898.

Sander, Ingo, Axel Jantsch, and Seyed-Hosein Attarzadeh-Niaki. 2017. “ForSyDe: System Design
Using a Functional Language and Models of Computation.” In Handbook of Hardware/Software
Codesign, edited by Soonhoi Ha and Jürgen Teich, 99–140. Dordrecht: Springer Netherlands. https:
//doi.org/10.1007/978-94-017-7267-9_5.

Sifakis, Joseph. 2015. “System Design Automation: Challenges and Limitations” 103 (November):
2093–2103.

Skillicorn, David B. 2005. Foundations of Parallel Programming. 6. Cambridge University Press.

Stuijk, Sander, Marc Geilen, Bart Theelen, and Twan Basten. 2011. “Scenario-Aware Dataflow: Modeling,
Analysis and Implementation of Dynamic Applications.” In 2011 International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation.

Ungureanu, George. 2018. ForSyDe-Atom User Manual. KTH Royal Institute of Technology. https:
//forsyde.github.io/forsyde-atom/assets/manual.pdf.

Ungureanu, George, Jose E. G. de Medeiros, and Ingo Sander. 2018. “Bridging Discrete and Continuous
Time Models with Atoms.” In 2018 Design, Automation & Test in Europe Conference & Exhibition
(Date), nil. https://doi.org/10.23919/date.2018.8342019.

Ungureanu, George, and Ingo Sander. 2017. “A Layered Formal Framework for Modeling of Cyber-
Physical Systems.” In 2017 Design, Automation & Test in Europe Conference & Exhibition (Date),
1715–20. IEEE.

Ungureanu, George, Timmy Sundström, Anders Åhlander, Ingo Sander, and Ingemar Söderquist. 2019.
“Formal Design, Co-Simulation and Validation of a Radar Signal Processing System.” In Proceedings
of FDL 2019: Forum on Specification & Design Languages.

76

https://doi.org/10.1109/tcad.2003.819898
https://doi.org/10.1007/978-94-017-7267-9_5
https://doi.org/10.1007/978-94-017-7267-9_5
https://forsyde.github.io/forsyde-atom/assets/manual.pdf
https://forsyde.github.io/forsyde-atom/assets/manual.pdf
https://doi.org/10.23919/date.2018.8342019

	Introduction
	Application Specification
	Using This Document

	High-Level Model of the AESA Signal Processing Chain in ForSyDe-Atom
	Quick Introduction to ForSyDe-Atom
	A High-Level Model
	Type Aliases and Constants
	Video Processing Pipeline Stages
	System Process Network
	System Parameters
	Coefficient Generators

	Model Simulation Against Test Data
	Conclusion

	Alternative Modeling Framework: ForSyDe-Shallow
	The High-Level Model
	Imported Libraries
	Type Synonyms
	Video Processing Pipeline Stages
	The AESA Process Network

	Model Simulation Against Test Data
	Conclusion

	Modeling the Radar Environment
	Object Reflection Model
	Approach 1: Translating a Numerical Program
	Approach 2: CT Signal Generators

	Sampling Noisy Data. Using Distributions.
	Conclusions

	Validating a ForSyDe Model Against the Specification
	Formal Notation
	Properties
	Imports
	Formulations
	Main function
	Data Generators

	Running the Test Suite. Conclusion

	Refining the Model Behavior. A Streaming Interpretation of AESA
	The High-Level Model
	Libraries and Aliases
	Video Processing Stages
	System Process Network

	Model Simulation Against Test Data
	Checking System Properties
	Imports
	Properties
	Main function. Test Suite Results

	Conclusion

	Model Synthesis to VHDL
	Refinement 1: Untimed MAV to Timed FIR
	Model
	Simulation
	Properties

	Refinement 2: Floating Point to Q19
	Model
	Simulation
	Properties

	Refinement 3: Deep Language Embedding
	Quick Introduction to ForSyDe-Deep
	Model
	Simulation. Synthesis
	Properties

	R4: Balancing the FIR Reduction
	Model
	Simulation. Synthesis
	Properties

	Conclusions

	Acknowledgements
	References

